用于氨气选择性催化还原氮氧化物组合催化剂的研究
[Abstract]:With the development of China's industry and the growth of automobile usage, a great deal of coal and oil are used for combustion, and the tail gas produced after combustion produces serious pollution to the earth's atmosphere. The ensuing series of air pollution problems, such as acid rain, haze and global warming, have a great impact on our people's lives and the development of the whole human society. It can be said that the pollution of the atmosphere threatens our health and living environment. Nitrogen oxides (NOx) are one of the main pollutants in atmospheric pollutants, mainly including NO and NO2 and a small amount of N2O. Our country's emission of nitrogen oxides has also become very strict. Ammonia-selective catalytic reduction of nitrogen oxide (NH3-SCR) is a kind of denitration method with reliable, high efficiency, good selectivity and good cost performance. Although the V-W (Mo)/ TiO2 catalyst has been applied in thermal power plant, it still has the problems of high operating temperature, narrow operating temperature window, selective decrease of N2 at high temperature, oxidation of SO2 to SO3, etc. Therefore, the development of a novel NH3-SCR catalyst with good effect is still the direction we should strive for. In the third chapter, several kinds of single metal oxides with different oxidizability are prepared. It is found that the oxidation of metal oxide catalysts plays an important role in NH3-SCR by comparison of the activity of a single metal oxide with different oxidation properties. The oxidation-resistant metal oxide catalysts tend to have good NH3-SCR catalytic reaction activity at low temperatures, but a large number of NO2 and N2O are generated during the reaction resulting in poor N2 selectivity. The MnOx synthesized by the precipitation method is Mn5O8, and MnOx synthesized by hydrothermal synthesis is mainly MnO2. The MnOx synthesized by hydrothermal method has further improved MnOx activity, but its selectivity is still poor. Through the sulfuric acid treatment of the MnOx synthesized by the precipitation method, the SO42-/ MnOx catalyst is prepared, and the selectivity and the activity of the reaction are greatly improved. By means of a series of characterization, it has been found that the introduction to MnOx plays a role in passivating the catalyst, while reducing MnOx oxidation, increasing the amount of oxygen on the surface of MnOx so as to improve the catalytic activity of MnOx. In the fourth chapter, a series of acid different metal oxides are prepared. Through the NH3-SCR catalytic activity evaluation of these acidic metal oxide catalysts, it was found that the acidity of metal oxides plays an important role in the reaction. Metal oxides with stronger acidity tend to have better high temperature activity, and their N2 selectivity is higher. Fe _ 2O _ 3 superacid catalyst was prepared by acid treatment of Fe2O3. After the sulfuric acid treatment, the Fe-/ Fe 2O 3 catalyst is greatly improved in activity and selectivity, and a series of characterization is carried out to analyze the SO42-/ Fe2O3 catalyst, It has been found that the introduction of hydrogen peroxide in the improvement of the acidity of Fe203 also increases the content of active oxygen species on the surface of the catalyst, thereby increasing the activity of its reaction. In the fifth chapter, a series of Mn-based composite metal oxides with good high-temperature activity are selected at low temperature. Through the active evaluation of the composite metal oxides of these two series, the composite metal oxide of Mn series has better NO conversion rate at low temperature. However, a large number of by-products are produced during the reaction, thereby reducing the N2 selectivity of the reaction. The Ce series composite metal oxide catalyst has better high temperature activity and N2 selectivity. The MnFeOx composite metal oxide is further selected to acidify it to prepare the Ni-/ MnFeOx catalyst. Although Fe-/ MnFeOx has been reduced at low temperature activity, the activity and selectivity at higher temperatures are greatly improved. In Chapter 6, we select a single metal oxide, composite metal oxide and modified single metal oxide. The combined catalyst was then prepared by three different combinations and the NH3-SCR activity was evaluated. Experiments show that when the catalyst is combined, the high-temperature active agent with good acidity is often placed in the front half section, and the catalyst which is formed by placing the low-temperature catalyst with good oxidation resistance in the second half section has the best catalytic activity and selectivity.
【学位授予单位】:北京化工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:O643.36
【相似文献】
相关期刊论文 前10条
1 宁化保;韩世奇;田淑英;;节能型氨催化剂的应用及效果[J];节能;1989年06期
2 龚惠娟,陈泽智;车用尾气催化剂催化特性的模拟[J];计算机与应用化学;2000年05期
3 陈泽智,陶建幸,龚惠娟;车用尾气催化剂工作性能的模拟与分析方法[J];计算机与应用化学;2001年Z1期
4 王嵩;毛东森;吴贵升;郭晓明;卢冠忠;;铜/氧化锆催化剂的制备及应用研究进展[J];化工进展;2008年06期
5 赵海;张德祥;高晋生;;稀土掺杂铁锰脱硝催化剂的制备及其性能研究[J];煤炭转化;2011年04期
6 ;轻油制氢烧结型催化剂降低煅烧温度和催化剂中镍含量初步研究[J];胜利石油化工;1976年03期
7 秦永宁;烃类水蒸汽转化制氢催化剂初步设计[J];天津大学学报;1978年02期
8 南化公司研究院二室钒催化剂组;美国进口硫酸钒催化剂剖析报告[J];硫酸工业;1979年02期
9 刘金香;高秀英;;热重法用于天然气蒸汽转化催化剂的筛选和还原条件的考察[J];石油化工;1980年07期
10 杨孔章;刘传朴;;氢气脉冲色谱法测定催化剂中镍表面积[J];石油化工;1980年10期
相关会议论文 前10条
1 李文鹏;徐显明;郁向民;李方伟;裴皓天;李影辉;;天然气二段蒸汽转化催化剂的分析表征[A];第四届全国工业催化技术及应用年会论文集[C];2007年
2 汪国军;吴粮华;陈欣;谢在库;;丙烯腈新型催化剂研制[A];第十三届全国催化学术会议论文集[C];2006年
3 郑俊娴;王远洋;;相催化剂微粒聚集分维特征的模拟研究[A];第七届全国催化剂制备科学与技术研讨会论文集[C];2009年
4 周晓奇;李速延;;变换催化剂的现状及其发展趋势[A];第2届全国工业催化技术及应用年会论文集[C];2005年
5 张鸿喜;吴君璧;宋美婷;李海涛;亢丽娜;赵永祥;;水热条件下Ni/La_2O_3-SiO_2-Al_2O_3催化剂结构演变[A];第十届全国工业催化技术及应用年会论文集[C];2013年
6 欧阳平;姚金华;陈国需;李华峰;;摩擦催化反应中机械摩擦作用对催化剂的影响[A];第四届全国工业催化技术及应用年会论文集[C];2007年
7 刘智;黄海兵;张新莉;甄洪鹏;义建军;黄启谷;杨万泰;张明革;高克京;李红明;;高活性TiCl_4/SiO_2/AlEt_3催化剂淤浆聚合制备宽峰分布聚乙烯[A];2011年全国高分子学术论文报告会论文摘要集[C];2011年
8 杨述芳;陶若虹;徐树元;任宏俊;;催化剂的壁厚设计与寿命管理[A];2012中国环境科学学会学术年会论文集(第三卷)[C];2012年
9 韩哲;张冬菊;李国平;武剑;刘成卜;;Ziegler-Natta催化剂下α-烯烃聚合反应中若干问题的理论研究[A];中国化学会第九届全国量子化学学术会议暨庆祝徐光宪教授从教六十年论文摘要集[C];2005年
10 洪景萍;;山梨醇和钌助剂添加对二氧化硅担载钴基催化剂结构及其费托合成性能影响的原位表征研究[A];中国化学会第28届学术年会第1分会场摘要集[C];2012年
相关重要报纸文章 前3条
1 覃泽文;催化剂助氢气轻松储存[N];中国能源报;2009年
2 仇国贤;原位晶化催化剂降物耗能耗[N];中国化工报;2009年
3 特约记者 张晓君 萧兵;科技创新降低能耗提高效率[N];中国石油报;2011年
相关博士学位论文 前10条
1 周功兵;液相苯部分加氢制环己烯新型钌催化剂的研究[D];复旦大学;2014年
2 刘洋;基于POC和SCR技术降低车用柴油机颗粒物和氮氧化物排放的研究[D];山东大学;2015年
3 伍士国;基于CTAB辅助制备的FeMnTiO_x催化剂NH_3-SCR脱硝的性能研究[D];南京大学;2015年
4 曹朋;丁腈橡胶溶液加氢催化剂的制备及活性研究[D];北京化工大学;2015年
5 王芬芬;纤维素催化转化制备乳酸[D];陕西师范大学;2015年
6 郭跃萍;电沉积制备非晶态Co基薄膜催化剂硼氢化钠制氢研究[D];兰州大学;2013年
7 汤常金;固相法制备金属氧化物催化材料及其消除CO、NO性能研究[D];南京大学;2011年
8 孙传智;TiO_2基催化剂的制备、表征及其在环境催化中应用的基础研究[D];南京大学;2011年
9 杜玮辰;负载型加氢金属催化剂的制备及其应用[D];浙江大学;2016年
10 苗雨欣;Au催化剂的制备及CO催化氧化性能研究[D];大连理工大学;2016年
相关硕士学位论文 前10条
1 王强;用于氨气选择性催化还原氮氧化物组合催化剂的研究[D];北京化工大学;2017年
2 段志敏;甲烷二氧化碳重整反应镍基和钴基催化剂的制备及性能研究[D];内蒙古大学;2015年
3 马茹瑰;CO_2加氢合成甲醇Cu-ZnO-ZrO_2催化剂的制备与性能研究[D];昆明理工大学;2015年
4 何贞泉;Cu/γ-Al_2O_3催化剂对HCN的催化水解性能研究[D];昆明理工大学;2015年
5 陈新怡;超临界甲醇中纤维素半纤维素催化转移加氢液化研究[D];昆明理工大学;2015年
6 陈雅;M41S及SBA-15介孔分子筛固载硅钨酸催化剂的制备表征及催化性能研究[D];郑州大学;2015年
7 李博;过渡金属复合物催化剂催化二氧化碳加氢反应的研究[D];兰州大学;2015年
8 邢婉贞;硅烷偶联剂改性硅胶催化双氧水的Baeyer-Villiger反应研究[D];南京理工大学;2015年
9 郭瑜;负载型铁基纳米金催化剂的制备及其构效关系研究[D];山东大学;2015年
10 张信莉;Mn改性γ-Fe_2O_3催化剂低温SCR脱硝性能研究[D];山东大学;2015年
,本文编号:2264418
本文链接:https://www.wllwen.com/kejilunwen/huaxue/2264418.html