草酸二甲酯催化加氢硅酸铜催化剂的研究
[Abstract]:As an important raw material in chemical industry, ethylene glycol is widely used in the production of polyester and other industries. The traditional mode of production uses petroleum as raw material to produce. With the increasing shortage of petroleum resources, the technology of making ethylene glycol from coal has been paid more and more attention by researchers. This technology refers to the selective hydrogenation of oxalate to produce ethylene glycol from gas. The key step is the hydrogenation of oxalate to ethylene glycol. The current copper-based catalysts have not been able to meet the industrial needs, and there are problems of catalytic activity and stability. Although researchers at home and abroad have done a lot of research on this subject and put forward different theories about the active centers of copper-based catalysts (Cu0 or Cu or Cu0-Cu collaboration), although there are differences, it is certain that, The method of controlling species composition and valence distribution on the surface of catalyst is the fundamental way to develop high performance oxalate hydrogenation catalyst. In this paper, coprecipitation method was used to prepare copper silicate catalyst. The interaction between active component and carrier during precipitation was studied. The effect of variable parameters on the catalytic performance of the catalyst was investigated and the preparation process was optimized. In addition, in order to solve the problem that the catalyst is easy to be deactivated by sintering at high temperature, the additive zinc is added to improve the thermal stability of the catalyst. The results are as follows: (1) in the process of preparing copper silicate catalyst by precipitation method, the precipitation mode has a great influence on the particle size of copper species and the dispersion on the carrier. The catalytic properties of the catalyst prepared by precipitation of copper nitrate drop with silicic acid are better than that of the catalyst prepared by the precipitation of copper nitrate with sodium silicate, that is, the catalyst prepared by the appropriate precipitation method has a good dispersion of active species and more active centers. In the precipitation process, the precipitation rate had a slight effect on the conversion of the reaction, but had little effect on the selectivity of the target product. The conversion rate of dimethyl oxalate increased slightly with the increase of precipitation time. The ratio of copper to silicon has a great influence on the catalytic performance of the catalyst, the ratio of copper to silicon is too low, the activity of the catalyst is less and the catalytic activity is weak; if the ratio of copper to silicon is too high, the active species tend to aggregate mutually, the particles grow up and the distribution is uneven, thus the activity of the catalyst will also decrease. The experimental results show that the optimum copper-silicon ratio is 0.85: 1, and the DMO conversion is 90.5 and EG selectivity is 82.7%. (2) in the study of zinc modified copper silicate catalyst, The method of introducing zinc has different influence on the catalyst. The results show that when copper and zinc are precipitated with sodium silicate at the same time, there is interaction between copper and zinc, and zinc can promote the dispersion of copper species. The effect of zinc content on the performance of the catalyst is great. When the amount of zinc is low, the effect of the catalyst is not obvious, but when the amount of zinc is too much, the active center will be wrapped. Therefore, the suitable catalyst composition is Cu0.8Zn0.2/SiO2, the conversion of the catalyst is 99.5 and the selectivity of 91.5% is the best result. The deactivation resistance test also shows that the conversion is 99%, and the activity is relatively stable.
【学位授予单位】:合肥工业大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TQ223.162;O643.36
【相似文献】
相关期刊论文 前10条
1 韩素芬,瞿晚星;铜催化剂中杂质元素测定方法的建立[J];有机硅材料;2004年05期
2 ;丙烯腈催化水合制丙烯酰胺骨架铜催化剂研制报告[J];胜利石油化工;1977年02期
3 金兰惠;;制备硅载体铜催化剂用于糠醛氢化[J];林产化工通讯;1989年04期
4 李克顺;;年产100吨铜催化剂生产装置建成投产[J];化工新型材料;1991年12期
5 京山;;净化汽车废气的铬和铜催化剂正在研制[J];精细与专用化学品;1992年03期
6 陈守堂;;硝基苯加氢改性铜催化剂通过技术鉴定[J];精细与专用化学品;1993年11期
7 ;硝基苯流化床改性铜催化剂及工业推广应用通过鉴定[J];吉化科技;1993年01期
8 邹家禹;用于甲基氯烷合成的铜催化剂的制备及评价[J];有机硅材料及应用;1996年04期
9 田申;从有机硅工厂废渣中回收铜[J];化学教育;1984年06期
10 曾小君,杨高文,徐肖邢,杨刚;高效耐氮脱氢骨架铜催化剂的制备及吸附量热研究[J];常熟高专学报;2000年04期
相关会议论文 前9条
1 吴贵升;王路存;刘永梅;曹勇;戴维林;贺鹤勇;范康年;;铜催化剂表面氧物种在甲醇水蒸气重整过程中作用机制研究[A];第十三届全国催化学术会议论文集[C];2006年
2 于雪;罗家还;王振旅;张文祥;;有机胺配合的铜催化剂及其对乙醇脱氢合成乙酸乙酯的催化性能[A];第十四届全国青年催化学术会议会议论文集[C];2013年
3 杨绿娟;朱文明;张庆红;王野;;钒修饰的铜催化剂上的丙烯环氧化反应[A];第十一届全国青年催化学术会议论文集(下)[C];2007年
4 屈孝铭;李廷义;谢观雷;毛金成;;铁/铜催化剂体系用于双C-O(S)反应的研究[A];第十六届全国金属有机化学学术讨论会论文集[C];2010年
5 罗发亮;张小玲;宋军超;马清祥;赵天生;杜彦忠;;H_2O_2-H_2SO_4改性AC载体及对催化合成DMC活性的影响[A];第十三届全国催化学术会议论文集[C];2006年
6 吴贵升;毛东森;卢冠忠;;ZrO_2和La_2O_3对铜催化剂甲醇水蒸气重整反应性能的影响?[A];第五届全国环境催化与环境材料学术会议论文集[C];2007年
7 东宇;马淳安;宋庆宝;;咪唑基查尔酮的合成[A];中国化学会第二十五届学术年会论文摘要集(上册)[C];2006年
8 孙传智;高飞;齐蕾;于武江;万海勤;董林;陈懿;;少量ZrO_2掺杂锐钛型TiO_2负载氧化铜催化剂在NO+CO中的反应性能研究[A];第六届全国环境催化与环境材料学术会议论文集[C];2009年
9 徐翠莲;王敏灿;王晓丹;王建海;;手性二茂铁基膦-铜催化剂在催化二乙基锌对β-芳基硝基烯烃的不对称加成反应中的应用[A];第七届全国磷化学化工暨第四届海峡化学生物学、生物技术与医药发展讨论会论文集[C];2006年
相关硕士学位论文 前10条
1 王霞;介孔炭材料负载铜催化剂甲醇氧化羰基化性能研究[D];太原理工大学;2016年
2 方志强;介孔MCM-41负载铜配合物催化剂在醇氧化与碳—杂键形成反应中的应用[D];广东药科大学;2016年
3 丁丁;草酸二甲酯催化加氢硅酸铜催化剂的研究[D];合肥工业大学;2016年
4 张俊茹;废弃含铜催化剂资源化研究[D];西南科技大学;2015年
5 高林娜;胶体铜催化剂催化特征的研究及量化计算[D];中国海洋大学;2005年
6 阮桂玉;铜催化剂活化C H键反应机理的理论研究[D];苏州大学;2015年
7 朱琼芳;活性炭载铜催化剂的制备与催化性能研究[D];太原理工大学;2011年
8 张岩;碳纳米管填充氧化铜催化剂的制备及性能研究[D];哈尔滨工业大学;2008年
9 王津津;新型希夫碱—铜催化剂的开发及催化甲基丙烯酸甲酯聚合的研究[D];西北大学;2012年
10 李治国;硫酸处理HZSM-5分子筛负载铜催化剂选择性催化还原一氧化氮的研究[D];汕头大学;2006年
,本文编号:2358272
本文链接:https://www.wllwen.com/kejilunwen/huaxue/2358272.html