当前位置:主页 > 科技论文 > 化学论文 >

糖化血清蛋白近红外光谱分析的研究

发布时间:2019-06-24 20:14
【摘要】:良好的血糖监测能有效的诊断和预防糖尿病的发生,延缓糖尿病急、慢性并发症的发展,而糖化血清蛋白的检测能够反映近期内血糖控制水平。本论文采用二维相关光谱和密度泛函理论对糖化血清蛋白的光谱特异性进行了研究,确定了糖化血清蛋白的特征吸收峰位置,并结合化学计量学方法建立了糖化血清蛋白浓度的定量校正模型,用验证集对模型的预测能力进行了检验。主要研究工作如下:(1)采用二维相关光谱分析和密度泛函理论计算,从实验和理论两方面分别分析了葡萄糖、血清蛋白、糖化血清蛋白的光谱,并对其吸收峰进行了归属,确定了糖化血清蛋白的特征结构N-H基团振动的吸收峰在7053cm-1附近。在密度泛函理论计算中,对糖化血清蛋白相比于葡萄糖、血清蛋白偏差较大的吸收峰进行归属,得到的三个基频吸收峰2953.91 cm-1 3101.44cm-1 3528.14cm-1,倍频后与二维相关光谱分析得到的倍频吸收峰 5923cm-1 6359 cm-1、7053cm-1 相一致。(2)在确定了糖化血清蛋白的特异性以及特征吸收峰的位置后,采用遗传算法-区间偏最小二乘法(GA-iPLS)建立糖化血清蛋白浓度的定量校正模型,其决定系数R2为0.9763,校正集样本的均方根误差RMSEC为0.007,遗传算法优选出的波段包含二维相关光谱分析和密度泛函理论计算得到的吸收峰,说明优选的波段能很好的用于糖化血清蛋白浓度模型的建立。使用验证集对模型的预测能力进行了检验,预测模型的决定系数R2为0.9705,验证集样本的均方根误差RMSEP为0.0087。结果表明,使用遗传算法-区间偏最小二乘法建立的糖化血清蛋白近红外光谱的浓度模型可用于糖化血清蛋白的临床检测。
[Abstract]:Good blood glucose monitoring can effectively diagnose and prevent the occurrence of diabetes, delay the development of acute and chronic complications of diabetes, and the detection of glycosylated serum protein can reflect the level of blood glucose control in the near future. In this paper, the spectral specificity of glycosylated serum protein was studied by two-dimensional correlation spectroscopy and density functional theory, and the position of characteristic absorption peak of glycosylated serum protein was determined. The quantitative correction model of glycosylated serum protein concentration was established by chemometrics method, and the prediction ability of the model was tested by verification set. The main research work is as follows: (1) the spectra of glucose, serum protein and glycosylated serum protein were analyzed by two-dimensional correlation spectrum analysis and density functional theory, respectively, and the absorption peaks of glucose, serum protein and glycosylated serum protein were assigned. It was determined that the absorption peak of N 鈮,

本文编号:2505335

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/huaxue/2505335.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户fbf09***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com