金属配体增强天然高分子基自愈合水凝胶的制备与性能研究
发布时间:2020-12-02 12:40
天然聚合物的自修复水凝胶因为其应用广泛而倍受关注。然而,设计出具有自愈效率高和机械强度强的水凝胶仍然是一个巨大的挑战。因此,开发出具有自愈能力且机械强度高的水凝胶仍然是发展水凝胶材料的主要目标。本研究提供了一种简单而经济的方法,来合成天然聚合物的自修复水凝胶,且这种天然聚合物的自修复水凝胶通过金属-配体相互作用将铁离子插入到物理交联的网络中,其机械性能得到增强。研究发现天然聚合物、铁离子以及丙烯酸(AA)单体浓度等因素都会提高水凝胶的机械性能和自修复能力。并且我们也系统的研究了两种天然多糖(羟乙基纤维素(HEC)和糖原(Gly))的浓度对水凝胶的机械性能和自修复能力的影响。本论文首先通过动态金属配体(M-L)相互作用合成了含有羟乙基纤维素的铁离子(HEC/PAA-Fe3+),且自我修复性和机械性能都得到增强的水凝胶。因为将三价铁离子(Fe3+)引入物理性交联网络聚合物(HEC/PAA)中,从而出现了动态能量耗散配位键,也正是因为这样凝胶的整体机械性能和自愈效率大大提高。而且(HEC/PAA-Fe3+)水凝胶在没有任何外部...
【文章来源】:东南大学江苏省 211工程院校 985工程院校 教育部直属院校
【文章页数】:174 页
【学位级别】:博士
【文章目录】:
Acknowledgement
摘要
Abstract
Chapter 1 Introduction
1.1 Gel and hydrogel
1.2 Hydrosol and hydrogel
1.3 Classification of hydrogels
1.4 Classification based on source
1.4.1 Natural polymer hydrogel
1.4.2 Synthetic polymer hydrogel
1.5 Classification based on the polymeric composition
1.5.1 Homopolymeric hydrogels
1.5.2 Copolymeric hydrogels
1.5.3 Multipolymeric hydrogels
1.6 Classification based on configuration
1.6.1 Crystalline
1.6.2 Amorphous (non-crystalline)
1.6.3 Semi-crystalline
1.7 Classification based on physical appearance
1.7.1 Matrix
1.7.2 Film
1.7.3 Microsphere
1.8 Classification based on network electrical charge
1.8.1 Ionic hydrogels (anionic or cationic)
1.8.2 Neutral hydrogels (non-ionic)
1.8.3 Ampholytic hydrogels
1.8.4 Polybetaines hydrogels (zwitterionic)
1.9 Classification based on cross-linking
1.9.1 Physically cross-linked hydrogels
1.9.2 Chemically cross-linked hydrogels
1.10 Classification based on physical state
1.10.1 Solid hydrogels
1.10.2 Semisolid hydrogels
1.10.3 Liquid hydrogels
1.11 Methods for synthesizing physically cross-linked hydrogels
1.11.1 Ionic interactions
1.11.2 Hydrogen bonding interactions
1.11.3 Hydrophobic interactions
1.11.4 Stereo-complexation
1.11.5 Supramolecular chemistry
1.11.6 Freeze-thawing
1.11.7 Maturation (heat-induced aggregation)
1.12 Natural polymer-based hydrogels
1.12.1 Hyaluronic acid-based hydrogels
1.12.2 Alginate
1.12.3 Chitosan
1.12.4 Cellulose
1.12.5 Hydroxyethyl cellulose (HEC)
1.13 Self-healing
1.14 Self-healing process
1.14.1 Autonomic self-healing hydrogels
1.14.2 Non-autonomic self-healing hydrogels
1.15 Classification of self-healing hydrogels
1.15.1 Inorganic-based self-healing hydrogels
1.15.2 Polymer-based self-healing hydrogels
1.15.3 Nanocomposite based self-healing hydrogels
1.16 Mechanism of self-healing of hydrogels
1.16.1 Physically (diffusion) self-healing mechanism
1.16.2 Chemically self-healing mechanism
1.17 Factors impact on self-healing mechanism
1.17.1 Separation time
1.17.2 Self-healing time
1.17.3 Temperature
1.17.4 Chain length
1.17.5 The content of nanomaterials
1.18 Sacrificial bonds
1.19 Nature and mechanisms of sacrificial bonds
1.19.1 Sacrificial bonds in biological materials
1.19.2 Constitutive theories of sacrificial bonding systems
1.20 Inspired sacrificial bonds in artificial polymeric materials
1.20.1 Sacrificial covalent bonds
1.20.2 Sacrificial non-covalent bonds
1.21 Sacrificial bonds in hydrogels
1.21.1 Sacrificial ionic bonds
1.21.2 Sacrificial hydrogen bonds
1.21.3 Sacrificial metal-ligand coordination bonds
1.21.4 Sacrificial hydrophobic interactions
1.21.5 Sacrificial host-guest complexes
1.22 Metal-ligand polymer hydrogels
1.22.1 Crosslinked hydrogels via metal coordination
1.22.2 Covalently crosslinked hydrogels
1.22.3 Hybrid crosslinked hydrogels
1.23 Self-healing gels mechanism based on constitutional dynamic chemistry (CDC):
1.24 Recent development in miscellaneous application fields
1.24.1 Superabsorbent hybrid hydrogels
1.24.2 Conductive polymer hydrogels
1.24.3 Polysaccharide-based natural hydrogels
1.24.4 Protein-based hydrogels
1.25 Research objectives
1.26 Research scope
1.27 Thesis outline
1.27.1 Chapter 1
1.27.2 Chapter 2
1.27.3 Chapter 3
1.27.4 Chapter 4
1.27.5 Chapter 5
1.27.6 Chapter 6 & 7
Chapter 2 Hydroxyethyl cellulose-based self-healing hydrogels with enhanced mechanicalproperties via metal-ligand bonds interactions
2.1 Introduction
2.2 Materials and methods
2.2.1 Materials
3+ hydrogels"> 2.3 Synthesis of HEC/PAA-Fe3+ hydrogels
2.4 Characterization
2.5 Mechanical properties
2.5.1 Tensile test
2.5.2 Compression test
2.5.3 Self-Healing efficiency
2.5.4 Swelling behavior
2.5.5 FTIR analysis
2.6 Results and discussion
2.6.1 Mechanical properties of HEC/PAA-Fe3+ hydrogel
2.6.2 Compression analysis
2.6.3 Tensile analysis
2.6.4 Self-Healing properties
2.6.5 Macroscopic self-healing test
2.6.6 Water content and swelling ration
Chapter 3 Enhancing the mechanical properties and self-healing efficiency of hydroxyethylcellulose-based conductive hydrogels via supramolecular interactions
3.1 Introduction
3.2 Materials and methods
3.2.1 Materials
3.2.2 Preparation of HEC/P(AA-co-AAm)-Fe3+ hydrogels
3.3 Results and discussion
3.3.1 FTIR analysis
3.4 Mechanical properties
3.4.1 Compression analysis
3.4.2 Tensile strength analysis
3.4.3 Self-healing experiment
3.4.4 Macroscopic self-healing test
3.4.5 Re-processability/re-shapeability
3.4.6 Conductivity test
3.4.7 Structural morphology
3.4.8 Rheological measurements
Chapter 4 Glycogen-based self-healing hydrogels with flexible, ultra-stretchable and enhanced mechanical properties via sacrificial metal-ligand bond interactions
4.1 Introduction
4.2 Materials and methods
4.2.1 Materials
3+ hydrogels"> 4.2.2 Preparation of Gly/PAA-Fe3+ hydrogels
4.3 Characterization
4.4 Mechanical properties
4.4.1 Tensile test
4.4.2 Compression test
4.4.3 Self-Healing efficiency
4.4.4 Growth rate percent
4.4.5 Swelling behavior
4.4.6 FTIR
4.5 Results and discussions
4.5.1 FTIR analysis
4.5.2 Stretching and flexible behavior of Gly/PAA-Fe3+ hydrogels
4.5.3 Mechanical properties via tensile testing
4.5.4 The compression analysis
4.5.5 Self-healing studies
4.5.6 Self-healing mechanism
4.5.7 Reshapeability/re-processability
4.5.8 Microscopic self-healing test
4.5.9 Water content and swelling ratio
Chapter 5 Facile and Cost-Effective Synthesis of Glycogen-Based Hydrogels with ExtremelyFlexible Excellent Self-Healing and Tunable Mechanical Properties
5.1 Introduction
5.2 Materials and Methods
5.2.1 Materials
3+ Hydrogels"> 5.2.2 Preparation of Gly-PVA/PAA-Fe3+ Hydrogels
5.3 Characterization
5.4 Measurement of the Swelling property
5.4.1 Mechanical tests
5.4.2 Self-healing efficiency
5.4.3 Growth Rate Percent
5.4.4 FTIR analysis
5.5 Results and Discussion
5.5.1 FTIR analysis
5.5.2 Stretchability and antifatigue characteristics
5.5.3 Tensile Strength
5.5.4 Self-Healing Experiments
5.5.5 Growth Rate Percent
5.5.6 Macroscopic self-healing experiment
5.5.7 Conductivity test
5.5.8 Water content
5.6 Comparative analysis (mechanical strength & self-healing efficiency)
6 Conclusion
7 References
8 List of Publication
本文编号:2895325
【文章来源】:东南大学江苏省 211工程院校 985工程院校 教育部直属院校
【文章页数】:174 页
【学位级别】:博士
【文章目录】:
Acknowledgement
摘要
Abstract
Chapter 1 Introduction
1.1 Gel and hydrogel
1.2 Hydrosol and hydrogel
1.3 Classification of hydrogels
1.4 Classification based on source
1.4.1 Natural polymer hydrogel
1.4.2 Synthetic polymer hydrogel
1.5 Classification based on the polymeric composition
1.5.1 Homopolymeric hydrogels
1.5.2 Copolymeric hydrogels
1.5.3 Multipolymeric hydrogels
1.6 Classification based on configuration
1.6.1 Crystalline
1.6.2 Amorphous (non-crystalline)
1.6.3 Semi-crystalline
1.7 Classification based on physical appearance
1.7.1 Matrix
1.7.2 Film
1.7.3 Microsphere
1.8 Classification based on network electrical charge
1.8.1 Ionic hydrogels (anionic or cationic)
1.8.2 Neutral hydrogels (non-ionic)
1.8.3 Ampholytic hydrogels
1.8.4 Polybetaines hydrogels (zwitterionic)
1.9 Classification based on cross-linking
1.9.1 Physically cross-linked hydrogels
1.9.2 Chemically cross-linked hydrogels
1.10 Classification based on physical state
1.10.1 Solid hydrogels
1.10.2 Semisolid hydrogels
1.10.3 Liquid hydrogels
1.11 Methods for synthesizing physically cross-linked hydrogels
1.11.1 Ionic interactions
1.11.2 Hydrogen bonding interactions
1.11.3 Hydrophobic interactions
1.11.4 Stereo-complexation
1.11.5 Supramolecular chemistry
1.11.6 Freeze-thawing
1.11.7 Maturation (heat-induced aggregation)
1.12 Natural polymer-based hydrogels
1.12.1 Hyaluronic acid-based hydrogels
1.12.2 Alginate
1.12.3 Chitosan
1.12.4 Cellulose
1.12.5 Hydroxyethyl cellulose (HEC)
1.13 Self-healing
1.14 Self-healing process
1.14.1 Autonomic self-healing hydrogels
1.14.2 Non-autonomic self-healing hydrogels
1.15 Classification of self-healing hydrogels
1.15.1 Inorganic-based self-healing hydrogels
1.15.2 Polymer-based self-healing hydrogels
1.15.3 Nanocomposite based self-healing hydrogels
1.16 Mechanism of self-healing of hydrogels
1.16.1 Physically (diffusion) self-healing mechanism
1.16.2 Chemically self-healing mechanism
1.17 Factors impact on self-healing mechanism
1.17.1 Separation time
1.17.2 Self-healing time
1.17.3 Temperature
1.17.4 Chain length
1.17.5 The content of nanomaterials
1.18 Sacrificial bonds
1.19 Nature and mechanisms of sacrificial bonds
1.19.1 Sacrificial bonds in biological materials
1.19.2 Constitutive theories of sacrificial bonding systems
1.20 Inspired sacrificial bonds in artificial polymeric materials
1.20.1 Sacrificial covalent bonds
1.20.2 Sacrificial non-covalent bonds
1.21 Sacrificial bonds in hydrogels
1.21.1 Sacrificial ionic bonds
1.21.2 Sacrificial hydrogen bonds
1.21.3 Sacrificial metal-ligand coordination bonds
1.21.4 Sacrificial hydrophobic interactions
1.21.5 Sacrificial host-guest complexes
1.22 Metal-ligand polymer hydrogels
1.22.1 Crosslinked hydrogels via metal coordination
1.22.2 Covalently crosslinked hydrogels
1.22.3 Hybrid crosslinked hydrogels
1.23 Self-healing gels mechanism based on constitutional dynamic chemistry (CDC):
1.24 Recent development in miscellaneous application fields
1.24.1 Superabsorbent hybrid hydrogels
1.24.2 Conductive polymer hydrogels
1.24.3 Polysaccharide-based natural hydrogels
1.24.4 Protein-based hydrogels
1.25 Research objectives
1.26 Research scope
1.27 Thesis outline
1.27.1 Chapter 1
1.27.2 Chapter 2
1.27.3 Chapter 3
1.27.4 Chapter 4
1.27.5 Chapter 5
1.27.6 Chapter 6 & 7
Chapter 2 Hydroxyethyl cellulose-based self-healing hydrogels with enhanced mechanicalproperties via metal-ligand bonds interactions
2.1 Introduction
2.2 Materials and methods
2.2.1 Materials
3+ hydrogels"> 2.3 Synthesis of HEC/PAA-Fe3+ hydrogels
2.4 Characterization
2.5 Mechanical properties
2.5.1 Tensile test
2.5.2 Compression test
2.5.3 Self-Healing efficiency
2.5.4 Swelling behavior
2.5.5 FTIR analysis
2.6 Results and discussion
2.6.1 Mechanical properties of HEC/PAA-Fe3+ hydrogel
2.6.2 Compression analysis
2.6.3 Tensile analysis
2.6.4 Self-Healing properties
2.6.5 Macroscopic self-healing test
2.6.6 Water content and swelling ration
Chapter 3 Enhancing the mechanical properties and self-healing efficiency of hydroxyethylcellulose-based conductive hydrogels via supramolecular interactions
3.1 Introduction
3.2 Materials and methods
3.2.1 Materials
3.2.2 Preparation of HEC/P(AA-co-AAm)-Fe3+ hydrogels
3.3 Results and discussion
3.3.1 FTIR analysis
3.4 Mechanical properties
3.4.1 Compression analysis
3.4.2 Tensile strength analysis
3.4.3 Self-healing experiment
3.4.4 Macroscopic self-healing test
3.4.5 Re-processability/re-shapeability
3.4.6 Conductivity test
3.4.7 Structural morphology
3.4.8 Rheological measurements
Chapter 4 Glycogen-based self-healing hydrogels with flexible, ultra-stretchable and enhanced mechanical properties via sacrificial metal-ligand bond interactions
4.1 Introduction
4.2 Materials and methods
4.2.1 Materials
3+ hydrogels"> 4.2.2 Preparation of Gly/PAA-Fe3+ hydrogels
4.3 Characterization
4.4 Mechanical properties
4.4.1 Tensile test
4.4.2 Compression test
4.4.3 Self-Healing efficiency
4.4.4 Growth rate percent
4.4.5 Swelling behavior
4.4.6 FTIR
4.5 Results and discussions
4.5.1 FTIR analysis
4.5.2 Stretching and flexible behavior of Gly/PAA-Fe3+ hydrogels
4.5.3 Mechanical properties via tensile testing
4.5.4 The compression analysis
4.5.5 Self-healing studies
4.5.6 Self-healing mechanism
4.5.7 Reshapeability/re-processability
4.5.8 Microscopic self-healing test
4.5.9 Water content and swelling ratio
Chapter 5 Facile and Cost-Effective Synthesis of Glycogen-Based Hydrogels with ExtremelyFlexible Excellent Self-Healing and Tunable Mechanical Properties
5.1 Introduction
5.2 Materials and Methods
5.2.1 Materials
3+ Hydrogels"> 5.2.2 Preparation of Gly-PVA/PAA-Fe3+ Hydrogels
5.3 Characterization
5.4 Measurement of the Swelling property
5.4.1 Mechanical tests
5.4.2 Self-healing efficiency
5.4.3 Growth Rate Percent
5.4.4 FTIR analysis
5.5 Results and Discussion
5.5.1 FTIR analysis
5.5.2 Stretchability and antifatigue characteristics
5.5.3 Tensile Strength
5.5.4 Self-Healing Experiments
5.5.5 Growth Rate Percent
5.5.6 Macroscopic self-healing experiment
5.5.7 Conductivity test
5.5.8 Water content
5.6 Comparative analysis (mechanical strength & self-healing efficiency)
6 Conclusion
7 References
8 List of Publication
本文编号:2895325
本文链接:https://www.wllwen.com/kejilunwen/huaxue/2895325.html
教材专著