基于分布式FBG传感阵列的微生物燃料电池阳极室内温度场分布实时测量系统研究
发布时间:2018-02-11 08:54
本文关键词: 光纤布拉格光栅 传感阵列 微生物燃料电池 温度场 出处:《重庆理工大学》2015年硕士论文 论文类型:学位论文
【摘要】:近年来,随着工业化的大力持续发展,人们对于能源消耗以及环境污染问题有了更多的关注。微生物燃料电池(M F C)因其在处理污水的同时还能产电的特性成为研究热点,M F C的这种特性使其在污水处理和产电产能中可能产生巨大的经济效益,目前M F C还不能直接投入到污水处理厂中使用主要是因为其产电效率低下,对污水中有机物的消耗速度较慢。光纤光栅传感器(F B G)因其体积小、精度高、耐腐蚀、实时性好等优点在生化领域中得到大量应用。M F C内部温度场分布是影响其产电效率的重要因素,目前对于测量M F C内部温度场分布的研究也比较少,若能对M F C内部温度场分布进行实时测量,对于研究如何提高M F C产电率将会是有力的帮助,并且还能进一步推动光纤光栅传感技术在生化领域的应用。本文主要提出基于F B G传感阵列实时测量M F C阳极室内部温度场分布情况,首先深入研究了M F C的制作原理及工作原理,光纤布拉格光栅(F B G)温度传感原理及复用技术,在这些理论的基础上,获得了M F C及F B G传感阵列的设计方案,根据设计方案制作出了实验用的M F C和F B G传感阵列,最后将制作的F B G传感阵列封装埋入M F C内部阳极室,通过搭建测量系统对M F C阳极室温度场分布进行实时测量。本次课题的主要研究内容有以下几点:(1)研究M F C的制作材料及工作原理,设计出制作M F C的方案,根据方案制作能够稳定运行的M F C(2)深入研究F B G温度传感原理及F B G复用技术,制作出测量温度场所需F B G传感阵列,通过蒸馏水标定实验检测F B G传感单元的温度特性以及传感单元之间是否存在波长漂移重叠。(3)搭建M F C阳极室温度场实时测量系统,通过该系统能够做到对M F C内部阳极室温度场实时监测,通过解调仪能够得到各F B G传感单元的实时波长,根据温度传感原理可计算出对应温度。(4)对M FC成长期、稳定期、衰老期的温度场数据进行分析,通过温度场分布情况推断出微生物在阳极室的分布情况,对于提高M F C产电效率的研究提供有力的支持。
[Abstract]:In recent years, with the vigorous and sustained development of industrialization, More attention has been paid to energy consumption and environmental pollution. Microbial fuel cell (MFC) has become a hot topic because of its ability to produce electricity while treating sewage. Great economic benefits can be generated in processing and power production capacity, At present, the main reason why M F C can not be directly used in sewage treatment plant is because of its low power generation efficiency and slow consumption of organic matter in sewage. Fiber Bragg grating sensor FB G) has the advantages of small size, high precision and corrosion resistance. The advantages of real-time performance are widely used in biochemistry field. The distribution of temperature field in MF C is an important factor affecting the efficiency of power generation. At present, there are few researches on measuring temperature field distribution in MF C. If the temperature field distribution in MF C can be measured in real time, it will be helpful to study how to improve the power generation rate of MF C. It can further promote the application of fiber Bragg grating sensing technology in the field of biochemistry. In this paper, a real-time measurement of temperature field distribution in the MFC anode chamber based on FBG sensor array is presented. Firstly, the fabrication principle and working principle of MF C, the temperature sensing principle and multiplexing technology of fiber Bragg grating (FBG) are studied. Based on these theories, the design scheme of MF C and F B G sensor array is obtained. According to the design scheme, the experimental MF C and F B G sensor arrays are fabricated. Finally, the fabricated F B G sensor arrays are encapsulated into the internal anode chamber of M F C. The temperature field distribution of M F C anode chamber is measured in real time by setting up a measuring system. The main research contents of this paper are as follows: 1) the fabrication material and working principle of M F C are studied, and the scheme of making M F C is designed. The principle of F-B G temperature sensing and the technology of F B G multiplexing are deeply studied according to the scheme, which can run stably. The F-B G sensor array is made for temperature measurement. The temperature characteristics of the FBG sensor unit and whether there is a wavelength shift overlap between the sensing units are tested by the distilled water calibration experiment. The real-time temperature field measurement system of the M F C anode chamber is built. Through this system, the temperature field of the anode chamber inside the MFC can be monitored in real time, and the real-time wavelength of each FBG sensor unit can be obtained by demodulation instrument. According to the principle of temperature sensing, the corresponding temperature can be calculated. The temperature field data of aging period were analyzed, and the distribution of microorganism in anode chamber was inferred from the distribution of temperature field, which provided a strong support for improving the efficiency of electricity production of M-F C.
【学位授予单位】:重庆理工大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TM911.45
【共引文献】
相关期刊论文 前5条
1 胡辽林;章鹏博;华灯鑫;巩鑫;;时分复用光纤光栅传感阵列中DFB激光器的高精度温控设计[J];传感技术学报;2012年07期
2 莫禾胜;陈胜权;熊川;;基于FBG传感器多波长解调检测设计[J];光通信技术;2008年02期
3 李丽;林玉池;付鲁华;沈小燕;陈清海;;光纤光栅空分光复用传感系统的研究[J];光学精密工程;2007年04期
4 李丽;何宏;林玉池;;压电陶瓷在光纤光栅传感解调中的应用[J];压电与声光;2010年06期
5 祁耀斌;吴敢锋;王汉熙;;光纤布拉格光栅传感复用模式发展方向[J];中南大学学报(自然科学版);2012年08期
,本文编号:1502666
本文链接:https://www.wllwen.com/kejilunwen/huaxuehuagong/1502666.html