球磨辅助优化工艺制备氮化硼纳米管膜润湿性的研究
发布时间:2018-03-07 15:41
本文选题:氮化硼纳米管膜 切入点:球磨法 出处:《哈尔滨工业大学》2015年硕士论文 论文类型:学位论文
【摘要】:近几十年来,氮化硼纳米管一直都以其独特的结构以及卓越的理化性能吸引着来自世界各国的科学家们,例如出色的机械性能和优异的热稳定性,这些都使氮化硼纳米管成为具有广阔应用前景的新一代纳米材料。本文采用硼涂料辅助球磨法在不锈钢基板上制备出氮化硼纳米管膜。在制备过程中,硼涂料被均匀地涂抹在不锈钢基板上,由此可以获得品质好、纯度高、密度大的氮化硼纳米管膜。文中通过对此方法的深入研究,探索出最佳球磨参数,同时对氮化硼纳米管膜的生长基板进行了前期预处理,从而达到了宏量制备氮化硼纳米管膜的目的。目前,对氮化硼纳米管膜荷叶效应的研究成果显著,纳米膜粗糙表面上特殊的微米、纳米相结合的分层结构可以对此效应进行有效解释。然而,氮化硼纳米管膜的花瓣效应却鲜有报道。实验过程中发现,通过外力作用,可以使制备在不锈钢基板上的氮化硼纳米管膜同时表现出超疏水状态和高黏附力状态。纳米膜中的氮化硼纳米管具有微米级的长度和纳米级的直径,粗糙表面上微米、纳米尺度的交织不仅为超疏水特性的形成提供了足够的粗糙度,更为水滴与纳米膜的接触提供了充分的接触面积。文中通过研究氮化硼纳米管膜上与荷叶效应和花瓣效应有关的多种润湿状态,建立了水滴与纳米膜接触时的润湿模型,并分析了不同润湿状态之间的转变条件。氮化硼纳米管的独特理化性能,如高温抗氧化、高热传导率和高弹性模量等,使氮化硼纳米管膜在纳米润湿材料领域具有广阔的应用空间。然而,国内外对于氮化硼纳米管膜特殊润湿性的应用研究一直处于空白阶段。本文将氮化硼纳米管膜应用到直接甲醇燃料电池中,在阳极极板的微米沟道上定位生长出氮化硼纳米管膜超疏水涂层,由此可以有效地减小水在沟道上的黏附,从而有利于CO2的释放,提高燃料效率。文中采用优化后的硼涂料辅助球磨法,使超疏水的氮化硼纳米管膜定位生长在流场沟道的侧壁上,同时保证阳极极板的表面只有少量甚至没有氮化硼纳米管的生长,从而使得阳极极板能够保持不锈钢原有的电学特性。由于氮化硼纳米管具有化学惰性,微米沟道上的涂层不仅具有超疏水特性还具有抗腐蚀性,更适应阳极流场的复杂环境。此外,理论分析通过COMSOL仿真说明了局部疏水结构形成的原因,为氮化硼纳米管膜的定位生长提供了新的分析路径。
[Abstract]:In recent decades, boron nitride nanotubes have attracted scientists from all over the world for their unique structure and excellent physical and chemical properties, such as excellent mechanical properties and excellent thermal stability. All of these make boron nitride nanotubes (BNTs) a new generation of nanomaterials with broad application prospects. In this paper, boron coating assisted ball milling method was used to prepare boron nitride nanotubes films on stainless steel substrates. Boron coatings are evenly applied on stainless steel substrates, so that boron nitride nanotube films with good quality, high purity and high density can be obtained. At the same time, the growth substrate of boron nitride nanotube film was pretreated, so as to achieve the purpose of preparing boron nitride nanotube film macroscopically. This effect can be effectively explained by the special micron structure on the rough surface of nanometer film. However, the petal effect of boron nitride nanotube film is rarely reported. The boron nitride nanotube films prepared on stainless steel substrates exhibit both superhydrophobic and high adhesion states. The boron nitride nanotubes in the films are of micron length and nanoscale diameters, and micrometers on rough surfaces. The interweaving of nanoscale not only provides enough roughness for the formation of superhydrophobic properties, In this paper, the wetting model of water droplet in contact with nanofilm was established by studying various wetting states related to lotus leaf effect and petal effect on boron nitride nanotube film. The unique physical and chemical properties of boron nitride nanotubes, such as high temperature oxidation resistance, high thermal conductivity and high elastic modulus, were analyzed. So that the boron nitride nanotube film has a wide application in the field of nano-wetting materials. The research on the special wettability of boron nitride nanotube membrane is still in blank phase. In this paper, the boron nitride nanotube membrane is applied to direct methanol fuel cell. The superhydrophobic coating of boron nitride nanotube film was grown on the microchannel of anode plate, which can effectively reduce the adhesion of water on the channel and thus facilitate the release of CO2. In this paper, the superhydrophobic boron nitride nanotube film is grown on the side wall of the channel in the flow field by using the optimized boron coating assisted ball milling method, which makes the superhydrophobic boron nitride nanotube film grow on the side wall of the channel in the flow field. At the same time, only a few or no boron nitride nanotubes grow on the surface of the anode plate, which enables the anode plate to maintain the original electrical properties of stainless steel. The coating on the micron channel has not only super hydrophobic property but also corrosion resistance, which is more suitable for the complex environment of anodic flow field. In addition, theoretical analysis and COMSOL simulation show the reason for the formation of local hydrophobic structure. It provides a new analytical path for the orientation growth of boron nitride nanotube films.
【学位授予单位】:哈尔滨工业大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TQ128.1;TB383.1
【相似文献】
相关期刊论文 前10条
1 ;切断纳米管的“软刀子”[J];炭素技术;2002年03期
2 ;俄即将投产优质纳米管[J];辽宁化工;2003年11期
3 Valerie Jamieson ,徐俊培;纳米管:将会改变世界面貌的中空碳丝[J];世界科学;2003年11期
4 ;日本制成双层纳米管[J];中国科技财富;2003年05期
5 周道其;纳米管制成的最小“转子”[J];现代物理知识;2004年02期
6 朱宝林,隋震鸣,陈晓,王淑荣,张守民,吴世华,黄唯平;金掺杂TiO_2纳米管的合成[J];科学通报;2005年07期
7 方宁;李新勇;贾金平;;SiO_2-TiO_2纳米管的制备及其光催化性能的研究[J];环境科学与技术;2007年03期
8 ;纳米管可由光束驱动[J];今日电子;2008年05期
9 ;日利用纳米管制出“世界上最小的拉面”[J];食品工业科技;2008年06期
10 卢利平;;日研发出4种能分别发出红、橙、黄、蓝光的发光纳米管[J];功能材料信息;2008年02期
相关会议论文 前10条
1 李静玲;陈文哲;黄世震;;银掺杂TiO_2纳米管制备与性能研究[A];2011中国材料研讨会论文摘要集[C];2011年
2 王晟;王,
本文编号:1579908
本文链接:https://www.wllwen.com/kejilunwen/huaxuehuagong/1579908.html