碳纤维增强层状木材陶瓷的研究
本文选题:木材陶瓷 切入点:层状结构 出处:《中南林业科技大学》2015年硕士论文 论文类型:学位论文
【摘要】:本研究以松木粉炭粉和液化木材为基材,通过热压成型制备单层木材陶瓷预制件,在氮气气氛保护下高温烧结制备片状木材陶瓷基体材料,然后使用环氧树脂将基体材料与碳纤维叠加胶合制备碳纤维增强层状木材陶瓷。研究发现,炭粉/液化木材质量比和烧结温度扮演着重要的角色,其对基体材料的基本性能有较大影响:随着炭粉/液化木材质量比的增加,碳得率增加,体积收缩率降低,同时表观密度也随之增加。但随着烧结温度的持续增加,碳得率和表观密度有降低的趋势。通过响应面法对基体材料的制备工艺进行优化发现:当烧结前密度、原料配比、烧结温度分别为1.1g/cm3、1:0.8和1100℃时所获得的基体材料具有较高的成品率和较好的抗弯强度。同时,建立了响应面优化模型:Y=7.89+0.42A+0.85B+0.69C+0.54BC-0.54A2-1.4B2-0.89C2。FTIR和XRD分析显示原料配比对基体材料的物相构成影响较小,但随着烧结温度升高,O和H等元素被逐步脱除,且较高的烧结温度有利于提高基体材料的石墨化程度;SEM观测发现基体材料能够部分保留木材原有的结构特征,增强型层状木材陶瓷的层状结构清晰,且在断裂过程中裂纹多在层间偏转。碳纤维增强层状结构木材陶瓷的力学性能随着烧结温度的升高而增加,但当烧结温度超过1100℃和原料配比超过1:0.75后,力学性能增加幅度表现为逐渐减缓。同时,与用传统方法制备的木材陶瓷相比,增强型木材陶瓷在力学性能方面提高显著:抗弯载荷由普通木材陶瓷的0.74MPa增至5.13MPa,提高了6.93倍;压缩载荷提高了10倍。同时,由于层状结构的存在和增强碳纤维的使用,使得断裂韧性远高于普通木材陶瓷,在本实验条件下提高了10倍左右。通过选择胶合压力、碳纤维型号、碳纤维分布角度为参考因素,设计正交试验,得到最佳制备方案为胶合压力为2.5MPa、碳纤维型号为3K、碳纤维分布角度0°。本研究通过利用液化木材代替了传统热固性树脂而起到了环保和节约资源的效果,同时采用碳纤维和层状结构对木材陶瓷进行增强,使其力学性能得到有效的提高,尤其是断裂韧性得到了较大的改善。
[Abstract]:In this study, the pine powder carbon powder and liquefied wood base, single wood ceramic preform by hot press molding, under the protective atmosphere of nitrogen preparing flake wood ceramic matrix material high temperature sintering, then the matrix material and carbon fiber overlay glue preparation of carbon fiber reinforced laminated wood ceramic epoxy resin. The study found that / the quality of liquefied wood charcoal powder ratio and sintering temperature plays an important role, has a great influence on the basic performance of the matrix material with the increase of liquefied wood quality / carbon powder ratio, carbon yield increased, the volume shrinkage decreased, while the apparent density is also increased. But with the sintering temperature increasing. The carbon yield and apparent density decreased. That optimized by response surface method preparation of matrix material: when before sintering density, the ratio of raw materials, sintering temperature were 1.1g/ cm3,1:0.8 And get the 1100 C matrix material with high yield and good bending strength. At the same time, a response surface optimization model: Y=7.89+0.42A+0.85B+0.69C+0.54BC-0.54A2-1.4B2-0.89C2.FTIR and XRD analysis showed that the ratio of raw materials on the matrix material phase constitutes a small effect, but with the increase of sintering temperature, O and H elements are gradually removed, sintering the high temperature and is conducive to improve the degree of graphitization of matrix material; SEM observation found that the matrix material can retain the original features of wood structure, reinforced layered junction type laminated woodceramics clear structure, and the crack in the fracture process in multi layer deflection. Carbon fiber reinforced mechanical properties of layered structure of wood ceramics increases with the the increase of sintering temperature, but when the sintering temperature is higher than 1100 DEG C and the molar ratio of more than 1:0.75, the mechanical properties of the increase is gradually reduced Slow. At the same time, compared with wood ceramics prepared by traditional methods, enhanced wood ceramics significantly improved the mechanical properties of flexural load by ordinary wood ceramics 0.74MPa to 5.13MPa, increased by 6.93 times; the compressive load is increased by 10 times. At the same time, due to the layered structure of existence and enhance the use of carbon fiber. The fracture toughness is higher than that of normal wood ceramics, under the experimental condition is improved by about 10 times. By selecting the bonding pressure, carbon fiber types, carbon fiber distribution point as reference factors, orthogonal design, the optimal preparation scheme for bonding pressure 2.5MPa, carbon fiber type 3K, carbon fiber distribution angle of 0 deg. this study. Through the use of liquefied wood instead of the traditional thermosetting resin to environmental protection and resource conservation effect, at the same time using carbon fiber and layered structure to enhance the mechanical properties of wood ceramics. The effective improvement, especially the fracture toughness, has been greatly improved.
【学位授予单位】:中南林业科技大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TQ174.7
【参考文献】
相关期刊论文 前8条
1 张建;陈志林;周建斌;傅峰;;竹炭基SiC陶瓷材料的显微结构及能谱分析[J];材料工程;2009年S1期
2 陈志林;傅峰;王群;左铁镛;;甲基三乙氧基硅烷改性溶胶制备陶瓷化木材的性能[J];复合材料学报;2009年03期
3 王萍;程晓农;严学华;周峰;;木粉/环氧树脂木材陶瓷的制备与研究[J];硅酸盐通报;2008年01期
4 范强,刘炎军,尹洪峰;层状陶瓷Ti_3SiC_2的研究现状[J];耐火材料;2003年01期
5 李冬云,乔冠军,金志浩;层状复合陶瓷材料的研究进展[J];无机材料学报;2002年01期
6 钱军民,金志浩,乔冠军;木材陶瓷研究进展[J];无机材料学报;2003年04期
7 马荣,乔冠军,金志浩;木材陶瓷的制备与性能研究[J];西安交通大学学报;1998年08期
8 蔡艳芝;尹洪峰;;SiC多孔陶瓷的仿生合成[J];宇航材料工艺;2013年02期
相关博士学位论文 前1条
1 陶毓博;木质材料/酚醛树脂烧结制造网络形态木陶瓷的研究[D];东北林业大学;2006年
相关硕士学位论文 前3条
1 毛帅;杉木苯酚液化残渣的结构表征与分形分析[D];北京林业大学;2011年
2 高永胜;壳聚糖/陶瓷层状复合材料的制备与表征[D];哈尔滨工业大学;2013年
3 陈铭浩;木陶瓷表面孔隙结构及其对摩擦性能影响研究[D];中南林业科技大学;2014年
,本文编号:1646820
本文链接:https://www.wllwen.com/kejilunwen/huaxuehuagong/1646820.html