硼酸铋纳米结构的制备及其中子-γ防护性能研究
本文选题:硼酸铋 + 溶胶凝胶法 ; 参考:《西南科技大学》2017年硕士论文
【摘要】:近年来,随着核能和核技术的迅猛发展,人类越来越频繁活动于各类射线的环境中。面对有较强穿透能力的中子和γ射线给人体带来的伤害,传统的辐射防护材料已经无法完全满足屏蔽的具体需求。因此,为了迎接进一步的挑战,研发对中子和γ射线屏蔽效果好且力学性能优良的新型辐射防护材料已经成为材料研发的主要方面。本文以Bi_2(NO_3)_(3.5)H)2O和H)3BO)3作为原料,通过溶胶凝胶法成功制备出硼酸铋晶体,并通过调节反应条件,制备了不同形貌的硼酸铋纳米结构。研究表明,Bi/B摩尔比对产物物相有很大影响,当n(Bi):n(B)=1:2时,产物为六方晶系的Bi_6B_(10)O_(24)晶体。烧结温度和时间对硼酸铋形貌有一定影响,并得出当在530℃下烧结5 h时可以得到厚度为十几纳米的硼酸铋片状结构,当烧结温度为600℃,时间为3 h时可以得到分散性较好,尺寸为100~300 nm的硼酸铋纳米颗粒。初步探究了不同形貌的硼酸铋纳米结构的形成机制,并发现助剂柠檬酸和EDTA在硼酸铋纳米结构的形成和形貌的控制方面均起到了重要作用。通过γ谱仪对制备得到的硼酸铋纳米粉体进行γ射线屏蔽性能测试,并运用蒙特卡罗(MCNP5)程序对其热中子的屏蔽性能进行模拟后发现,硼酸铋纳米粒子对中子和γ射线的屏蔽性能均随着粉体含量的增大而增大;并且当粉体含量相同时,对γ射线的质量衰减系数随着射线能量的增大而降低,同时由于铋弱吸收区的存在,材料在105.3 keV处表现出最高的屏蔽性能。另外,不同形貌的硼酸铋纳米粉体对热中子和γ射线的屏蔽性能均要高于Bi2O3和B2O3混合物的屏蔽性能,并且片状结构的硼酸铋与颗粒状硼酸铋相比对γ射线表现出更好的屏蔽性能,但是二者对热中子的吸收性能差异甚微,表明材料对中子和γ射线的屏蔽性不仅与材料密度有关,还与粒子尺寸和形貌有关,将填料粒子纳米化,并提高粒子形貌的规整度后有利于材料对中子和γ射线的屏蔽性能的提高。
[Abstract]:In recent years, with the rapid development of nuclear energy and technology, human beings are more and more frequent activities in various types of radiation environment. In the face of neutron and gamma ray has a strong ability to penetrate to the harm of radiation protection materials, the traditional has been unable to fully meet the specific needs of shielding. Therefore, in order to meet the challenges of further research. The neutron and gamma ray shielding effect is good and the new radiation protection material with excellent mechanical properties and has become the main aspect of material development. Based on the Bi_2 (NO_3) _ (3.5)) H 2O and H 3BO) 3) as raw materials by the sol-gel method successfully prepared bismuth borate crystal, and by adjusting the reaction conditions boric acid, bismuth nanostructures with different morphologies were prepared. The results show that the molar ratio of Bi/B phase has a great influence on the product, when n (Bi): n (B) =1:2, is the product of the six party system of Bi_6B_ (10) O_ (24) crystal. The sintering temperature and time on boron Have a certain effect of bismuth morphology, obtained when sintering at 530 DEG C for 5 h from bismuth borate sheet structure thickness is 10 nm, when sintering temperature is 600 DEG C, time of 3 h can be obtained with good dispersion, size of bismuth borate nano particles 100~300 nm. A preliminary study of the formation mechanism of boric acid bismuth nanostructures with different morphologies, and found that the additives of citric acid and EDTA control on the formation and morphology of bismuth borate nano structure has played an important role. The gamma ray shielding performance test by gamma spectrometry bismuth borate nano powder was prepared by using Monte Carlo (MCNP5), and the shielding performance of program the thermal neutron simulation found that the shielding properties of bismuth borate nanoparticles on the neutron and gamma ray were increase with the powder content; and when the powder content is the same, the quality of gamma ray attenuation coefficient with With the increase of the X-ray energy decreases at the same time, due to the existence of weak absorption of bismuth, exhibits the highest shielding performance at 105.3 keV. In addition, shielding shielding properties of bismuth borate nano powders with different morphologies of thermal neutrons and gamma rays were higher than that of Bi2O3 and B2O3 mixture, and bismuth borate flake the structure and the granular bismuth borate compared to gamma ray shielding showed better performance, but the two of the thermal neutron absorption properties showed little difference, shielding materials for neutron and gamma ray is not only related to the density of the material, is also related to the particle size and morphology, the nano filler particles, and improve particle morphology the regularity is conducive to shielding materials for neutron and gamma ray enhancement.
【学位授予单位】:西南科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TQ135.32;TB383.1
【相似文献】
相关期刊论文 前10条
1 王金志;纳米[J];理论与实践;2001年02期
2 白春礼;;纳米科技及其发展前景[J];群言;2001年04期
3 白春礼;纳米科技及其发展前景[J];安徽科技;2002年03期
4 白春礼;纳米科技及其发展前景[J];微纳电子技术;2002年01期
5 黄彪;纳米科技前景灿烂,应用开发任重道远[J];中国粉体技术;2002年01期
6 一东;;纳米产业化成了企业泥潭[J];新经济导刊;2003年Z2期
7 宋允萍;纳米科技[J];中学文科;2001年01期
8 李斌,沈路涛;纳米科技[J];焊接学报;2000年04期
9 齐东月;纳米 又一场新技术革命来临了[J];民族团结;2000年10期
10 徐滨士,欧忠文,马世宁;纳米表面工程基本问题及其进展[J];中国表面工程;2001年03期
相关会议论文 前10条
1 陈天虎;谢巧勤;;纳米矿物学[A];中国矿物岩石地球化学学会第13届学术年会论文集[C];2011年
2 马燕合;李克健;吴述尧;;加快建设我国纳米科技创新体系[A];纳米材料和技术应用进展——全国第二届纳米材料和技术应用会议论文集(上卷)[C];2001年
3 李正孝;煍岩;;漫娗纳米技圫和纳米材料的a捎煤蛌|展[A];第二届功能性纺织品及纳米技术应用研讨会论文集[C];2002年
4 伊阳;陶鑫;;纳米CaCO_3在塑料改性中的应用研究[A];PPTS2005塑料加工技术高峰论坛论文集[C];2005年
5 洪广言;;稀土产业与纳米科技[A];第九届中国稀土企业家联谊会会议论文集[C];2002年
6 惠飞;王栋民;;纳米水泥混凝土的研究进展[A];2008年中国水泥技术年会暨第十届全国水泥技术交流大会论文集[C];2008年
7 秦伯雄;陈峰;马卓然;;高压流体纳米磨及其应用[A];纳米材料和技术应用进展——全国第三届纳米材料和技术应用会议论文集(上卷)[C];2003年
8 王树林;李生娟;童正明;李来强;;振动纳米学进展[A];第七届全国颗粒制备与处理学术暨应用研讨会论文集[C];2004年
9 洪广言;贾积晓;于德才;孙锁良;李天民;王振华;;纳米级氧化镱的制备与表征[A];中国稀土学会第四届学术年会论文集[C];2000年
10 洪茂椿;;纳米催化在化石资源高效转化中的应用研究[A];中国化学会2008年中西部地区无机化学、化工学术交流会会议论文集[C];2008年
相关重要报纸文章 前10条
1 张立德(中国科学院固体物理研究所);纳米专家话纳米[N];中国高新技术产业导报;2002年
2 本报记者 赵晓展;纳米科技,,产业化序幕刚刚拉开[N];工人日报;2002年
3 宗合 晓丽;纳米科技成果产业化将带来巨大经济效益[N];消费日报;2004年
4 朱文龙;产学研联手助推纳米产业[N];文汇报;2006年
5 ;神奇的纳米科技[N];中国有色金属报;2006年
6 本报记者 李贽;纳米还没走出实验室[N];大众科技报;2001年
7 冯 薇;纳米护肤品没那么神[N];大众科技报;2005年
8 本报记者 彤云;打造纳米产业链条[N];中国高新技术产业导报;2001年
9 张芳;纳米护肤品其实没那么神[N];科技日报;2005年
10 赵展慧 张之豪;纳米世界有多神奇?[N];人民日报;2013年
相关博士学位论文 前10条
1 樊莉鑫;纳米电极体系界面结构及过程的理论与数值模拟研究[D];武汉大学;2014年
2 冯晓勇;高速重击条件下高锰钢表面纳米晶的制备及组织性能研究[D];燕山大学;2015年
3 黄权;B-C-N体系中新型超硬材料制备与性能研究[D];燕山大学;2015年
4 王东新;纳米钻石靶向载药体系的制备及其与细胞相互作用的研究[D];山西大学;2014年
5 张俊丽;低维磁性纳米结构的可控合成、微观表征及应用研究[D];兰州大学;2015年
6 于佳鑫;两种新型光学材料在显微生物成像与光谱检测中的应用探索[D];浙江大学;2015年
7 李志明;块体纳米晶钛的制备及组织演变与力学行为[D];上海交通大学;2014年
8 杨树瑚;缺陷对几种过渡族金属氧化物磁性的影响[D];南京大学;2012年
9 刘春静;锂离子电池锡基纳米负极材料制备及储锂性能[D];大连理工大学;2015年
10 谢伟丽;SiC纳米线三维结构的制备与生物相容性[D];哈尔滨工业大学;2014年
相关硕士学位论文 前10条
1 林诠彬;中药纳米化对中医药的影响[D];广州中医药大学;2010年
2 毛彩霞;纳米二氧化锰的安全性评价[D];华中师范大学;2008年
3 邓世琪;PbTi0_3及LiTi0_2纳米结构的水热合成及其光致发光和光催化性能研究[D];浙江大学;2015年
4 葛岩;YAG:Ce~(3+)纳米晶的制备及其发光性能的研究[D];上海师范大学;2015年
5 潘伟源;水热法合成的过渡金属化合物掺杂对Li-Mg-B-H储氢体系的改性研究[D];浙江大学;2015年
6 豆贝贝;纳米水泥熟料矿物的合成与性能研究[D];河北联合大学;2014年
7 郭步超;高氮奥氏体不锈钢机械纳米化表面层及其热稳定性研究[D];长春工业大学;2015年
8 王艳艳;纳米化/渗氮/渗硫层与润滑油添加剂的摩擦化学效应研究[D];中国地质大学(北京);2015年
9 周文敏;Cr_2WO_6、Ag_2CrO_4微/纳米晶的制备及性能研究[D];陕西科技大学;2015年
10 龚成章;纳米铝结构性质及Al/RNO_2界面作用的理论研究[D];南京理工大学;2015年
本文编号:1744733
本文链接:https://www.wllwen.com/kejilunwen/huaxuehuagong/1744733.html