荷电喷雾射流卷吸流场与脱硫传质试验研究
发布时间:2018-04-22 00:37
本文选题:荷电射流 + 流场测量 ; 参考:《排灌机械工程学报》2017年10期
【摘要】:为了研究荷电射流喷嘴附近的卷吸流动,探讨荷电电压对卷吸的形成、发展以及对雾滴吸收SO_2的强化作用,采用粒子图像速度场仪对不同荷电电压下喷嘴附近的射流流动进行测量与分析,获得了近喷嘴处荷电喷雾射流卷吸流动的速度矢量图、速度云图与流线图,并进行了荷电喷雾烟气脱硫传质试验.试验结果表明:在荷电压作用下,喷嘴处荷电射流边缘区存在不同于常规雾化的卷吸现象,而主射流区流场在静电作用下变化并不明显;随着荷电电压的升高,其环形电极附近场强不断增大,在库仑力与极化力作用下其卷吸程度加剧;卷吸流动能够使雾滴与周围气体介质产生较强的混掺作用,同时也是荷电射流复杂涡旋流动结构形成的重要原因,可以提高脱硫效率达5%~10%.
[Abstract]:In order to study the entrainment flow near the charged jet nozzle, the formation and development of charged voltage on entrainment and the enhancement of droplet absorption of SO_2 were discussed. A particle image velocity field instrument is used to measure and analyze the jet flow near the nozzle under different charge voltages. The velocity vector diagram, velocity cloud diagram and streamline diagram of the entrainment flow of the charged spray jet near the nozzle are obtained. The mass transfer test of flue gas desulfurization by electric spray was also carried out. The experimental results show that, under the action of the charge voltage, the entrainment of the charged jet edge is different from that of the conventional atomization, but the flow field in the main jet zone does not change obviously under the electrostatic action, and with the increase of the charged voltage, the entrainment of the jet is different from that of the conventional atomization. The field strength near the annular electrode is increasing and the entrainment degree is increased under the action of the Kulun force and the polarization force, and the entrainment flow can make the fog droplet and the surrounding gas medium produce stronger mixing effect. At the same time, it is also an important reason for the formation of complex vortex flow structure of charged jet, which can improve the desulphurization efficiency up to 510.
【作者单位】: 南通开放大学机电工程学院;上海大学机电工程与自动化学院;江苏大学能源与动力工程学院;
【基金】:江苏高校自然科学基金资助项目(09KJD470001)
【分类号】:TQ021.4
【相似文献】
中国期刊全文数据库 前2条
1 沈惠冲;刁永发;;剪切射流在受限空间卷吸特性研究[J];安全与环境学报;2013年01期
2 禹言芳;李春晓;孟辉波;王艳芬;宋明远;吴剑华;;不同形状喷嘴的射流流动与卷吸特性[J];过程工程学报;2014年04期
,本文编号:1784851
本文链接:https://www.wllwen.com/kejilunwen/huaxuehuagong/1784851.html