300KA大型预焙铝电解槽电热场的计算分析
发布时间:2018-04-28 01:18
本文选题:铝电解槽 + 电热场 ; 参考:《北方工业大学》2016年硕士论文
【摘要】:在现代铝生产过程中,生产铝的主要设备——铝电解槽,其中存在着多种物理场,包括电场、热场、磁场、应力场、流场等。在这些物理场中每一个物理场都不是相互独立的,而是相互影响的,每一种物理场都会对其他的几种物理场产生或大或小的影响,关系非常复杂。在这些物理场中,电场和热场是其他物理场的基础,所以电热场的某些参数值会对铝生产带来一定的影响,具体的影响主要包括水平电流的大小、槽体电热平衡、槽膛伸腿长度、铝液界面平稳度,进而就会影响电流的效率、能耗多少、槽体部分结构的寿命等经济技术指标。在电热场的研究中,直接对某些参数进行测量难度大、工作量也大,而且只能测量槽体某些关键部位。本课题采用数值仿真的方法对铝电解槽的电热场进行了计算机仿真,从而达到优化生产指标的目的。本课题利用有限元分析软件COMSOL Multiphysics,根据某设计院铝电解槽的设计图纸以及它的结构和物理参数建立了铝电解槽的电热场数学物理模型。而且在计算仿真时,本课题会按照槽体长轴和短轴将槽体切开,取整个槽体的四分之一进行计算仿真。在将铝电解槽的电热场看做稳态场的前提下,对电热场进行数学计算时,耦合计算导电的拉普拉斯方程和有内热源的导热泊松方程。本课题首先仿真计算了稳定生产情况下铝电解槽的电压分布和温度分布,并分析讨论其分布的合理性。然后计算了改变阳极保温材料的厚度和铝电解槽换极工艺两种情况下,电解槽温度场的变化情况。当阳极保温材料厚度由160mm降为40mm时,计算出电解槽最高温度基本保持不变,最低温度从128℃下降到79℃;本文还计算了更换阳极时新阳极的温度对铝电解槽的影响,计算结果表明新加入的阳极的温度越高,槽体最低温度越高,新阳极周围的温度也会随着升高。本课题瞬态计算了更换的新阳极的温度变化情况,计算结果表明通过热传递的方式阳极被慢慢加热。通过这些计算能够为铝生产提供指导。
[Abstract]:In the process of modern aluminum production, there are many kinds of physical fields, including electric field, thermal field, magnetic field, stress field, flow field and so on. In these physical fields, each physical field is not independent of each other, but interacts with each other. Each physical field will have a large or small effect on other physical fields, and the relationship is very complex. In these physical fields, the electric field and the thermal field are the basis of other physical fields, so some parameters of the electrothermal field will have a certain impact on aluminum production. The specific effects include the magnitude of horizontal current, the electrothermal balance of the tank, The length of the leg and the stability of the liquid aluminum interface will affect the efficiency of the current, the amount of energy consumption, the lifetime of the tank structure and other economic and technical indicators. In the study of electrothermal field, it is difficult to measure some parameters directly, and the workload is also large, and only some key parts of the tank body can be measured. In this paper, the method of numerical simulation is used to simulate the electrothermal field of aluminum reduction cell, so as to optimize the production index. Using finite element analysis software COMSOL Multiphysics, the mathematical and physical model of electrothermal field of aluminum electrolysis cell is established according to the design drawings, structure and physical parameters of aluminum reduction cell in a design institute. Moreover, in the course of calculation and simulation, the slot body will be cut by the long axis and the short axis, and 1/4 of the whole tank body will be taken for calculation and simulation. On the premise that the electrothermal field of the aluminum reduction cell is regarded as the steady state field, the Laplace equation and the Poisson equation with internal heat source are coupled to calculate the electrothermal field. In this paper, the voltage distribution and temperature distribution of aluminum reduction cell under the condition of stable production are calculated by simulation, and the rationality of the distribution is analyzed and discussed. Then the temperature field of the electrolytic cell is calculated under the condition of changing the thickness of the anode insulation material and the electrode changing process of the aluminum reduction cell. When the thickness of anode insulation material is reduced from 160mm to 40mm, the maximum temperature of the electrolytic cell remains basically unchanged, and the minimum temperature decreases from 128 鈩,
本文编号:1813153
本文链接:https://www.wllwen.com/kejilunwen/huaxuehuagong/1813153.html