三维纳米网状Mn基氧化物的孔径及其电化学性能研究
本文选题:阳极电沉积 + Mn氧化物 ; 参考:《南昌航空大学》2015年硕士论文
【摘要】:针对MnO2存在导电性差、真实比容低、离子传导性差等问题,本文开发了新的制备方法和掺杂改性工艺,制备出了三维纳米网状结构的Mn基氧化物。本论文采用阳极电沉积的方法制备具有三维纳米网状结构的MnO2和MnVFe氧化物,并系统研究了工艺参数、元素掺杂等因素对锰基氧化物纳米结构及性能的影响,并利用X射线衍射仪(XRD)、场发射扫描电镜(FESEM)、能谱仪(EDS)等检测技术及电化学测试方法对锰基氧化物的结构和性能进行了表征。研究表明,采用恒电流脉冲电沉积制备三维多孔MnO2材料,电流密度和通断比各为0.435 mA/cm2、7:1和0.87 mA/cm2、10:1时,都能获得由纳米线自组装成的三维网状,孔径约40 nm;电流密度和通断比为0.435 mA/cm2、10:1时,可获得近乎垂直于基底的相互交织的开放式纳米片薄膜;电流密度和通断比为0.87 mA/cm2、15:1时,形成了细小密集纳米片,并互相交织形成三维多孔结构,孔径约200nm。采用恒电位脉冲电沉积制备三维多孔MnO2材料,通断比都为3:1,沉积电位0.9 V时,制备的薄膜形成了由直径约50 nm、长度约200 nm的纳米线自组装成的三维孔结构;沉积电位1 V时,制备的薄膜表面及截面均为三维网状结构。阳极电沉积电流密度为5~200 m A·cm2时,形成由直径约3~80 nm、长径比约5~10的纳米线自组装成的三维纳米网状结构,网孔分布均匀。重点考察电流密度、NaVO3浓度、NH4Fe(SO4)2浓度和PH值四个因素,设计正交实验,采用阳极电沉积法制备的MnVFe氧化物基本都具有三维纳米网状结构,孔径约3~80 nm,具有典型的γ-MnO2晶体相结构。根据正交试验结果选出了4种具有不同网孔孔径的MnVFe氧化物,孔径分布范围分别为3~10 nm、15~40 nm、40~60 nm和60~80 nm,研究了扫描速度对不同孔径MnVFe氧化物电容性能的影响。扫描速率为0.5mV/s时,不同孔径各自的比容量分别为450.91F/g、398.55 F/g、289.15 F/g和253.17 F/g;充放电速率为0.2A/g时,不同孔径各自的比容量分别为475.25 F/g、428.5 F/g、328.75 F/g和312.86 F/g。扫描速率由0.5mV/s增大至200 mV/s时,4种不同孔径的MnVFe氧化物的比电容保持率分别35%、54%、60.2%和36.7%;充放电速率由0.5 A/g增大至5 A/g时,4种不同孔径的MnVFe氧化物的比电容保持率分别69%、81%、86%和72%。与未掺杂的MnO2相比,MnVFe氧化物细小的三维纳米网状结构极大增加了电极的导电性,其比容量提高36%。在不同浓度的Na2SO4电解液中,扫描速率为1A/g时,MnVFe氧化物的比电容在浓度为0.5 mol/L时最大,可达253.4 F/g。
[Abstract]:In order to solve the problems of poor electrical conductivity, low real specific volume and poor ionic conductivity in MnO2, a new preparation method and doping modification technology were developed to prepare Mn-based oxides with three-dimensional nanoscale structure. In this paper, MnO2 and MnVFe oxides with three dimensional nanocrystalline meshes were prepared by anodic electrodeposition, and the effects of process parameters and element doping on the structure and properties of manganese based oxides were studied systematically. The structure and properties of manganese based oxides were characterized by X-ray diffractometer (XRD), field emission scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS). The results show that when the current density and the on-to-break ratio are 0.435 Ma / cm _ 2 / 7: 1 and 0.87 Ma / cm _ 2 / 10: 1, respectively, the three-dimensional porous MnO2 materials prepared by constant current pulse electrodeposition can be self-assembled by nanowires. When the current density and the on-to-break ratio are 0.435 Ma / cm ~ (2) 10: 1, the interlaced open nanocrystalline films almost perpendicular to the substrate can be obtained. When the current density and the on-to-break ratio are 0.87 Ma / cm ~ (2) / 15: 1, small and dense nanocrystals are formed. And intertwined with each other to form a three-dimensional porous structure with a pore size of about 200 nm. Three-dimensional porous MnO2 materials were prepared by potentiostatic pulse electrodeposition with a ratio of 3: 1 and a potential of 0.9 V. The films were self-assembled by nanowires of about 50 nm in diameter and 200 nm in length, and the deposition potential was 1 V. The surface and cross section of the prepared films are all three-dimensional reticulated structures. When the current density of anodic electrodeposition is 5 ~ 200mA cm2, a three-dimensional nanowire structure is formed by self-assembly of nanowires with a diameter of about 3nm and a aspect ratio of about 5 ~ 10, and the net pores are uniformly distributed. Four factors, NH _ 4Feo _ 4SO _ 4 concentration and PH value of NaVO3 concentration, were investigated in detail. Orthogonal experiment was designed. The MnVFe oxides prepared by anodic electrodeposition all had three-dimensional nano-network structure, pore size about 380nm, and typical 纬 -MnO _ 2 crystal phase structure. According to the results of orthogonal experiments, four kinds of MnVFe oxides with different pore sizes were selected. The pore size distribution ranges from 3 ~ 10 nm to 1540 nm ~ 40 nm ~ 4060 nm and 60 ~ (80) nm, respectively. The effect of scanning speed on the capacitance of MnVFe oxides with different pore sizes was studied. When the scanning rate is 0.5mV/s, the specific capacity of different aperture is 450.91F / g 398.55F / g 289.15F / g and 253.17 Fr / g, respectively. When the charge / discharge rate is 0.2A/g, the specific capacity of different aperture is 475.25 F / g 428.5 FG 328.75 FG and 312.86 Fr / g respectively. The specific capacitance retention rates of the four kinds of MnVFe oxides with different pore sizes increased from 0.5mV/s to 200 mV/s, and the specific capacitance retention rates of the four MnVFe oxides with different apertures were 6981 86% and 722%, respectively, when the charge / discharge rate increased from 0.5 Ag to 5 Ag, and the specific capacitance retention rates of the four MnVFe oxides with different pore sizes were 540.2% and 36.7%, respectively, and the charge-discharge rate increased from 0.5 Ag to 5 Ag. Compared with the unadulterated MnO2, the electrical conductivity and the specific capacity of the electrode are increased by 36%. In different concentration of Na2SO4 electrolyte, the specific capacitance of Mn-MnVFe oxides can reach 253.4 F / g at the concentration of 0.5 mol/L when the scanning rate is 1A/g.
【学位授予单位】:南昌航空大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TQ137.12;TB383.1
【共引文献】
相关期刊论文 前10条
1 路恒达;王欣;朱君秋;林玮;唐电;;RuO_2-ZrO_2二元氧化物电活性的EIS分析[J];福州大学学报(自然科学版);2013年05期
2 黄振楠;寇生中;金东东;杨杭生;张孝彬;;氢氧化镍/还原氧化石墨烯复合物的超级电容性能[J];功能材料;2015年05期
3 彭勃;郭姣姣;王玉平;;石墨烯基材料用于超级电容器的研究进展[J];电力电容器与无功补偿;2015年03期
4 Jingxia Qiu;Jacob Dawood;Shanqing Zhang;;Hydrogenation of nanostructured semiconductors for energy conversion and storage[J];Chinese Science Bulletin;2014年18期
5 Xiaonao Liu;Tzyh-Jong Tarn;Fenfen Huang;Jie Fan;;Recent advances in inkjet printing synthesis of functional metal oxides[J];Particuology;2015年02期
6 马丽虹;张建民;;金属氢氧化物电沉积过程电极/溶液界面pH变化的原位研究[J];郑州大学学报(理学版);2013年03期
7 娄长影;朱君秋;邵艳群;马晓磊;唐电;;退火温度对Ti/IrO_2-CeO_2电极组织结构与电容性能的影响[J];中国稀土学报;2014年02期
8 李丽;胡中爱;杨玉英;吴红英;崔璐娟;;MnO_2/NiCo_2O_4的静电自组装合成及其电化学性能[J];物理化学学报;2014年05期
9 邵艳群;伊昭宇;娄长影;朱君秋;马晓磊;唐电;;Ti/IrO_2-SnO_2-CeO_2电极的电容特性[J];中国有色金属学报;2014年10期
10 邵艳群;伊昭宇;朱君秋;娄长影;马晓磊;唐电;;高比能量Ti/(Ir_(0.3)Sn_(0.7-x)Ce_x)O_2电极材料的制备及其电化学性能[J];中国有色金属学报;2015年03期
相关博士学位论文 前6条
1 常云珍;化学还原石墨烯的制备、组装及电化学性能研究[D];山西大学;2013年
2 范国康;纳米金属氧化物的低温无模板合成及其基于QCM技术的气体敏感特性研究[D];浙江大学;2013年
3 陈浩;金属氧化物(氢氧化物)纳米结构材料的制备及其在光电探测器和超级电容器中的应用[D];复旦大学;2013年
4 张帆;基于石墨烯的复合材料的制备及其在储能器件中的应用研究[D];南开大学;2014年
5 王凯;超级电容器的制备及性能研究[D];大连理工大学;2014年
6 纪莹;锰/钴/镍基硫族化合物的合成及其电化学性质的研究[D];吉林大学;2015年
相关硕士学位论文 前10条
1 金敏;超级电容器镍基电极材料的阳极氧化制备方法研究[D];华南理工大学;2013年
2 范忠辉;基于多孔模板电铸法制备镍基功能材料[D];华南理工大学;2013年
3 李文君;聚苯胺包覆电纺纳米碳纤维的制备及其超级电容性能[D];哈尔滨工业大学;2013年
4 刘丽霞;碳纳米管和金属氢氧化物用作超级电容器电极材料的研究[D];南华大学;2013年
5 蔡健炜;碳纳米管/氧化锰纳米复合电极材料的制备及其电容性质研究[D];陕西师范大学;2013年
6 邓文韬;石墨烯/氧化镍复合材料的制备及其电容性能的研究[D];中南大学;2013年
7 何静娴;石墨烯/铜系功能复合材料的控制合成及性能探究[D];西北师范大学;2013年
8 冉思涵;微波辐照法合成 Ni(OH)_2,CuO/CNTs纳米结构及其性质研究[D];华中科技大学;2013年
9 玉富达;准固态超级电容器用氧化还原介质掺杂凝胶聚合物电解质制备及电化学性能研究[D];华侨大学;2013年
10 包福喜;钴基金属氧化物的合成及其赝电容性质的研究[D];吉林大学;2014年
,本文编号:1853370
本文链接:https://www.wllwen.com/kejilunwen/huaxuehuagong/1853370.html