广州感潮河道黑臭底泥产电及修复研究
本文选题:黑臭底泥 + 微生物燃料电池 ; 参考:《华南理工大学》2015年硕士论文
【摘要】:本研究利用黑臭河涌底泥、50 m M/L的铁氰化钾缓冲液、双室型有机玻璃反应器和质子交换膜构建了一种双室型微生物燃料电池(Microbial fuel cell,MFC),通过改变MFC的运行条件,研究了电池的启动及产电能力,分析了MFC对底泥的修复效果,并进一步研究了MFC产电过程中甲烷的排放情况。研究结论如下:(1)以底泥为阳极接种物,1 g/L的葡萄糖溶液为营养液,采用序批式培养方法启动电池。经过约720 h的运行后,MFC成功启动,且电压最高可达到0.767 V。启动成功后,以底泥为阳极基质,能在较长时间内(200 h)维持较高的电压水平。(2)本研究分别以底泥、50 m M/L的铁氰化钾缓冲液构建实验系统,每个运行周期均设置处理组和对照组进行实验。在只改变外接电阻、对阴极室曝气和添加铁氰化钾的运行周期中,各个电池的内阻比较接近,均在1300Ω左右。电池的功率密度分别在外接电阻为1500Ω处、阴极室曝气6 h和阴极室铁氰化钾浓度为200 m M/L时达到最大,对应的最大功率密度分别为4.94 m W·m-2、6.00 m W·m-2和6.45 m W·m-2。在向阴极室添加氯化钠溶液,改变溶液电导率和改变阳极基质组成后,电池电阻有了较大变化。随着氯化钠浓度的增加,内阻呈降低的趋势,最大功率密度出现在氯化钠浓度为200 m M/L处,为6.64 m W·m-2,内阻为1140.4Ω。在泥水体积比例为1:1时,内阻仅为902.1Ω,最大输出功率密度为7.24 m W·m-2。电池内阻整体上较大的原因主要是质子交换膜的存在增大了内阻,且底泥本身为泥水混合物,内阻比水溶液要大许多。(3)构建的双室MFC系统能够在产电的同时能实现对底泥的修复。研究结果表明,电极生物膜的存在大大促进了有机质的降解。五个运行周期中,电池对底泥有机质的最高去除率分别达到7.83%、11.65%、10.15%、11.35%和11.57%。有机质的最高去除率均在电池的最大功率密度处达到。同一运行周期中,随着功率密度的提升,有机质的去除率增加。(4)阳极生物膜的存在在一定程度上达到了将磷从底泥中去除的效果。在以底泥有机质为主要燃料来源时,系统的输出功率密度变化与铵态氮的去除趋势没有呈现出特别明显的规律。底质中铵态氮可作为电子供体被生物膜氧化去除。阳极室的厌氧环境有利于反硝化作用对硝酸盐的去除。同时,底泥中的硝酸盐也是阳极潜在的电子竞争体,可作为电子受体,需要生物膜降解足够电子供体来保证电子的提供以去除硝态氮。(5)构建的双室MFC系统在产电与修复底泥的同时加快了底泥中甲烷的排放速率。就各处理组而言,CH4表现出功率密度越大产生量越小的趋势。在阳极室基质相同时,甲烷的产生受到物质传递与电子数量的影响。当改变阳极室基质时,基质中有机物的种类与含量对甲烷产生有较大影响。(6)构建的双室MFC系统在产电与修复底泥的同时,也能影响CO2和N2O的产生与排放。CO2和N2O的产生和排放总体趋势在同一个运行周期内均呈现出随着功率密度的变大而增加的趋势。CO2的产生量与有机物降解有关,有机物降解越多,相应的CO2的产生量就越大。N2O的产生主要来源于反硝化作用。阳极室中厌氧环境有利于反硝化作用的发生。
[Abstract]:In this study, a double chamber microbiological fuel cell (Microbial fuel cell, MFC) was constructed with the bottom mud of black smelly river, 50 m M/L potassium ferricyanide buffer, double chamber organo glass reactor and proton exchange membrane. The starting and producing capacity of the battery were studied by changing the operating conditions of MFC, and the restoration effect of MFC to the sediment was analyzed. The emission of methane in the process of MFC production was further studied. The conclusions were as follows: (1) the anode inoculation with bottom mud and 1 g/L of glucose solution as nutrient solution were used to start the battery. After the operation of about 720 h, the MFC was successfully started and the maximum voltage could reach 0.767 V. and the anode substrate was used as the anode substrate. A higher voltage level can be maintained for a long time (200 h). (2) the experimental system was constructed in this study with sediment and potassium ferricyanide buffer solution of 50 m M/L respectively. Each operation period set the treatment group and the control group to experiment. In the operation period of only the external resistance, the aeration of the cathode chamber and the addition of potassium ferricyanide, each battery is inside. The power density of the battery is about 1300 Omega. The power density of the battery is at 1500 Omega, the cathode chamber aeration 6 h and the cathode chamber potassium ferricyanide concentration are 200 m M/L. The maximum power density is 4.94 m W. M-2,6.00 m W. M-2 and 6.45 m W. The Sodium Chloride Solution is added to the cathode chamber to change the solution electricity. The resistance of the battery has been greatly changed after the conductivity and the composition of the anode matrix. With the increase of NaCl concentration, the internal resistance is decreasing. The maximum power density appears at the concentration of 200 m M/L, which is 6.64 m W. M-2 and the internal resistance is 1140.4 Omega. The internal resistance is only 902.1 omega and the maximum output power density is 7.24 when the volume ratio of mud water is 1:1. The main reason for the overall internal resistance of M W / m-2. battery is that the existence of the proton exchange membrane increases the internal resistance, and the sediment itself is a muddy mixture, and the internal resistance is much larger than that of the water solution. (3) the double chamber MFC system can be built to repair the sediment at the same time in the production of electricity. In the five cycles, the maximum removal rates of organic matter to the bottom mud were 7.83%, 11.65%, 10.15%, 11.35% and 11.57%., the highest removal rate of organic matter was reached at the maximum power density of the battery. The removal rate of organic matter increased with the increase of power density. (4) anodic biofilm. When the organic matter in the sediment is the main source of fuel, the change of the output power density of the system and the removal of ammonium nitrogen do not show a special rule. The ammonium nitrogen in the substrate can be oxidized by the biofilm by the biofilm. The anaerobes of the anode chamber are removed. The environment is beneficial to the removal of nitrite by denitrification. At the same time, the nitrate in the sediment is also the potential electronic competitive body of the anode, which can be used as the electron acceptor, and the biofilm is required to degrade enough electron donor to ensure the supply of electrons to remove nitrate nitrogen. (5) the double room MFC system has accelerated the sediment in the bottom mud while producing electricity and repairing the sediment. The rate of the emission of alkane. As far as the treatment group is concerned, CH4 shows a trend of smaller power density. At the same time in the anode chamber matrix, the production of methane is affected by the transfer of material and the number of electrons. When the anode chamber matrix is changed, the types and content of organic matter in the matrix have a great influence on the production of methane. (6) the dual chamber MFC is constructed. At the same time, the system can affect the production and repair of the bottom mud, it can also affect the production and emission of CO2 and N2O and the general trend of emission and emission of.CO2 and N2O in the same cycle. The increasing trend of.CO2 is related to the degradation of organic matter. The more degradation of organic matter and the greater the amount of corresponding CO2 production The production of.N2O is mainly due to denitrification. The anaerobic environment in the anode chamber is conducive to denitrification.
【学位授予单位】:华南理工大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:X522;TM911.45
【参考文献】
相关期刊论文 前10条
1 王维奇;曾从盛;仝川;;湿地甲烷产生的测定方法及主要控制因子研究综述[J];亚热带资源与环境学报;2007年02期
2 林晓;袁斌;吴对林;吕松;;赶潮河涌污染修复的对策研究——以东莞市蚬涌河为例[J];广东化工;2006年02期
3 谌伟;李小平;孙从军;赵振;;低强度曝气技术修复河道黑臭水体的可行性研究[J];中国给水排水;2009年01期
4 罗家海;;影响珠江广州河段局部水体黑臭的主要原因剖析[J];广州环境科学;2001年02期
5 田伟君,翟金波;生物膜技术在污染河道治理中的应用[J];环境保护;2003年08期
6 黄雁云;温琰茂;任露陆;;珠三角城市河道污染特征及治理措施——以佛山水道为例[J];环境;2008年S1期
7 骆芳;秦雪娜;彭勃;;黑臭河流治理技术的研究进展[J];科技信息;2011年09期
8 张涛;高大文;;稻田CH_4排放研究进展[J];湿地科学;2008年02期
9 鄂焱;仝川;王维奇;姚顺;杨红玉;;底物和电子受体对互花米草湿地沉积物甲烷产生潜力的影响[J];湿地科学与管理;2010年01期
10 仲海涛;吴启堂;;从废水中回收能源——微生物燃料电池和发酵生物制氢技术[J];可再生能源;2006年03期
相关博士学位论文 前1条
1 姜鲁青;感潮河段沉积物—水界面营养盐交换行为研究[D];中国海洋大学;2011年
相关硕士学位论文 前3条
1 李程亮;底泥对氮磷的吸附及投加微生物对底泥磷释放的影响[D];华中农业大学;2011年
2 李贺;无媒介双室微生物燃料电池运行影响因素的研究[D];哈尔滨工业大学;2006年
3 邝臣坤;城市河涌受污染底泥的固化/稳定化及其植生性能研究[D];华南理工大学;2012年
,本文编号:1886933
本文链接:https://www.wllwen.com/kejilunwen/huaxuehuagong/1886933.html