无溶剂、TMSCl催化下合成α-氨基膦酸酯衍生物
中文摘要
由于α-氨基膦酸酯衍生物在结构上近似于天然氨基酸, 而且这种化合物有着极大的作用和优点。α-氨基膦酸酯衍生物继承了类似于天然氨基酸的好的生物利用性能,毒性低且残留量低,所以其一般被用作杀虫剂、除草剂、杀菌剂、生长调节剂、酶的抑制剂等,甚至还可用作抗癌药物和抗病毒药物。因此高效的α-氨基膦酸酯衍生物合成方法一直备受关注。
α-氨基膦酸酯衍生物在现在利用极为广泛,且合成方法也很多。高效的合成方法的探究十分重要,而现阶段许多合成方法是通过使用有机溶剂的两步合成法,这种方法一般由于有机溶剂的使用而存在最终产物难提取、产率低和对环境不好的弊端。在这种情况下,本文提出了新的无溶剂的“一锅法”合成法来合成产物。本文详细的介绍了利用三甲基氯硅烷(TMSCl)在无溶剂的条件下合成一系列的α-氨基膦酸酯衍生物。具体是:在无溶剂条件下,利用取代苯甲醛、取代苯胺和亚磷酸二乙酯为原料,并以TMSCl作为催化剂,“一锅法”合成了一系列的α-氨基膦酸酯衍生物。此外,还研究分析了原料的配比和TMSC1的浓度对合成产物和产物浓度的影响。最后,其结构经1H NMR和代表化合物的X-单晶衍射进行了表征。此合成方法反应条件温和、操作方便、产率较高且对环境友好,是一种绿色的合成方法。
Abstract
As the stucture of α-amino phosphonate derivatives is similar to natural amino acids, this compound play an important role in the field of biology and pharmacology. α-amino phosphonate derivative inherited the good bioavailability properties from the natural amino acid, it shows low toxicity and low residual amount, generally, it is used as insecticides, herbicides , fungicides , growth-regulating agents, enzymes inhibitors , and even can be used as anti-cancer drugs and antiviral drugs. So theα-amino phosphonate derivatives have attracted much attention, and an efficient synthetic method of α-amino phosphonate derivatives is very important.
Nowadays, α-amino phosphonate derivatives are applied widely, and there are lots of synthesis methods of α-amino phosphonate derivatives. The efficient systhesis method ofα-amino phosphonate derivatives is very important, and the most famous synthetic method is two-step synthesis method, which use an organic solvent method. But this method have some disadvantages, such as the final product extraction is difficult, low yield and some environmental issues. In this case, this paper proposed a “one-pot” synthesis method to synthesize a new solvent-free product. This paper describes a new method that use trimethylchlorosilane (TMSCl) as synthesis catalyst for solvent-free synethsis, the product is a series ofα-amino phosphonate derivatives.Specifically, in the solvent-free react system, the use of substituted benzaldehyde, substituted aniline and diethyl phosphite as raw materials, and TMSCl as a catalyst, the "one-pot" synthesis method has been used to synthesized a series of α-amino phosphonate derivatives. Furthermore, this paper also analysed the effect of TMSC1 concentration and the ratio of raw materials for the yield of synthetic products. Finally, the structure of representative compoud were tested by X-single-crystal and 1H NMR. It is indicated that this synthesis method is a gree synthetic method with mild reaction conditions, the convenient way of operation, high yields and environmental friendly.
目 录
中文摘要 IAbstract II
第一章 绪论 1
1.1 α-氨基膦酸酯衍生物的应用 1
1.1.1α-氨基膦酸酯衍生物用作除草剂 1
1.1.2α-氨基膦酸酯衍生物的抗菌作用 3
1.1.3α-氨基膦酸酯衍生物用作植物生长素 4
1.1.4α-氨基膦酸酯衍生物的酶抑制剂和抗病毒作用 5
1.1.5α-氨基膦酸酯衍生物的抗癌作用 7
1.1.6 N端决定α-氨基膦酸酯衍生物的应用 7
1.2 α-氨基膦酸酯衍生物的合成进展 8
1.2.1 无溶剂合成法制备α-氨基膦酸酯衍生物 9
1.2.2 微波合成法制备α-氨基膦酸酯衍生物 11
1.2.3 “一锅法”合成法制备α-氨基膦酸酯衍生物 13
1.2.4 离子液体在无溶剂条件下催化合成α-氨基膦酸酯衍生物 15
1.3 α-氨基膦酸酯衍生物的合成中的影响因素 16
1.3.1 反应中的投料比的影响 17
1.3.2 反应温度的影响 17
1.3.3 催化剂对反应的影响 18
1.4 目标化合物合成的设计和研究意义 19
1.4.1 目标化合物合成的思路 19
1.4.2 目标化合物的合成路线 20
1.4.3 本课题的研究意义 21
第二章 实验部分 22
2.1 实验仪器与试剂 22
2.1.1 实验试剂 22
2.1.2 实验仪器 22
2.2 α-氨基膦酸酯衍生物的合成 23
2.2.1 试剂处理 23
2.2.2 α-氨基膦酸酯衍生物的合成步骤 23
2.2.3 α-氨基膦酸酯衍生物的提纯处理 24
2.2 α-氨基膦酸酯衍生物的反应条件优化实验 24
2.3 α-氨基膦酸酯衍生物产物的分析 25
2.3.1 α-氨基膦酸酯衍生物产物的1H NMR分析 25
2.3.2 α-氨基膦酸酯衍生物产物的13C NMR分析 25
2.3.3 α-氨基膦酸酯衍生物产物的元素分析 26
2.3.3 α-氨基膦酸酯衍生物产物的X单晶衍射 26
第三章 实验结果与讨论 28
3.1 α-氨基膦酸酯衍生物的合成结果与分析 28
3.2催化剂TMSC1的用量对α-氨基膦酸酯衍生物产率的影响 29
3.3α-氨基膦酸酯衍生物产物的1H NMR结果与分析 30
3.4α-氨基膦酸酯衍生物产物的13C NMR结果与分析 34
3.5α-氨基膦酸酯衍生物产物的元素分析结果 37
3.6α-氨基膦酸酯衍生物产物的单晶衍射结果与分析 37
第四章 结论 39
参考文献 40
附图 部分化合物的图谱 44
在学期间发表的文章 45
致 谢 46
第一章 绪论
1.1 α-氨基膦酸酯衍生物的应用
目前,有机磷化学这门学科已经发展成独立的学科,而且有机磷化学在整个化学的研究领域中都占据着极为重要的地位。大部分的其他学科也会在发展中会涉及到这一学科。20世纪30年代,一些学者偶然的情况下发现了有机磷毒剂和有机磷杀虫剂后,标志着整个有机磷化学正式开始发展,并且逐步走向成熟,同时也开创了整个新的农药工业。α-氨基膦酸酯衍生物是和天然氨基酸有着类似结构的化合物,同时它也是有机磷化学在近几十年来发展起来重要的组成部分。1959年,, Horiguhci和knadastu两位科学家从绵羊体内分离出来α-氨基膦酸至今已经有50多年的历史了。α-氨基膦酸酯是α-氨基酸和拟肽水解中间产物的结构类似物,具有一定的生物活性。正是基于这一点,近些年来,α-氨基膦酸酯衍生物的生物活性研究受到了许多科学家的广泛关注,其结构的多样性同时也为相关新的衍生物的合成奠定了基础。研究表明,不同的α-氨基膦酸酯衍生物具有不同的生物活性。迄今为止,研究者已经发现了α-氨基膦酸酯衍生物具有抗植物病毒[1]、除草[2]、植物生长调节[3]、杀菌[4]、酶抑制剂活性[5]、抗癌[6]、抗氧化能力[7, 8]等生物活性。此外研究还发现它在动物体内有着一定的抗血栓和抗动脉粥样硬化的重要生物活性[9-13]。
因此,α-氨基膦酸酯衍生物备受科学家的关注,许多新的α-氨基膦酸酯衍生物通过不同的方法合成出来,同时不同的生物活性也在被不断地发现,它在各个领域的应用方面的研究也逐渐成熟起来[14]。
参考文献
[1] 石德清, 陈茹玉. 含 α—氨基膦酸酯的脱落酸酰胺类似物的合成与生物活性 [J]. 应用化学, 2002, 19(8): 780-2.
[2] TANAKA F, KINOSHITA K, TANIMURA R, et al. Relaxing substrate specificity in antibody-catalyzed reactions: enantioselective hydrolysis of N-Cbz-amino acid esters [J]. Journal of the American Chemical Society, 1996, 118(10): 2332-9.[3] METE A, SENER S, KUECUEKHAY H, et al. Synthesis of some heterocyclic phosphonates and their antibacterial and antifungal activities [J]. INDIAN JOURNAL OF CHEMISTRY SECTION B, 1999, 38(197-200.
[4] 李建平, 刘锐杰, 侯瑛, et al. 水杨醛氨基酸席夫碱类α-氨基膦酸酯的合成及生物活性 [J]. 应用化学, 2008, 10): 1243-5.
[5] SONG B, YANG S, HONG Y, et al. Synthesis and bioactivity of fluorine compounds containing isoxazolylamino and phosphonate groups [J]. Journal of fluorine chemistry, 2005, 126(9): 1419-24.
[6] KLESZCZYNSKA H, SARAPUK J, DZIAMSKA A. The physicochemical properties of some new aminophosphonates [J]. Cellular and Molecular Biology Letters, 2000, 5(4): 415-22.
[7] 吕恩年, 徐琰, 冉春玲, et al. 新型含二茂铁的 α-氨基膦酸酯的合成及表征 [J]. 有机化学, 2008, 28(10): 1735-9.
[8] 王倩, 慕邵峰, 杨日芳, et al. 新型 α-氨基腈及 α-氨基膦酸酯类衍生物对人低密度脂蛋白氧化修饰的影响 [J]. 中国药理学通报, 2002, 18(4): 468-70.
[9] STEIN J C, HOWLETT B, BOYES D C, et al. Molecular cloning of a putative receptor protein kinase gene encoded at the self-incompatibility locus of Brassica oleracea [J]. Proceedings of the National Academy of Sciences, 1991, 88(19): 8816-20.
[10] WITKOWSKI J, ROBINS R K, SIDWELL R W, et al. Design, synthesis, and broad spectrum antiviral activity of 1-. beta.-D-ribofuranosyl-1, 2, 4-triazole-3-carboxamide and related nucleosides [J]. Journal of medicinal chemistry, 1972, 15(11): 1150-4.
[11] CHEN D, CHEN K, WANG H. [Antithrombotic effects of morpholine and piperazine ring derivatives and their molecular mechanism] [J]. Yao xue xue bao= Acta pharmaceutica Sinica, 2003, 38(9): 641-5.
[12] YANG R, ZHAO R, CHEN D, et al. Discovering selective agonists of endothelial target for acetylcholine (ETA) via diversity-guided pharmacophore simplification and simulation [J]. Bioorganic & medicinal chemistry letters, 2004, 14(12): 3017-25.
[13] 李在国, 黄润秋, 杨, et al. 含苯并噻唑杂环的α-氨基烷基膦酸二乙酯的合成及生物活性 [J]. 高等学校化学学报, 1998, 12): 95-9.
[14] 万德慧, 吴明书, 马静雅. 不对称 Kabachnik-Fields 反应合成研究进展 [J]. Chin J Org Chem, 2012, 32(13-8.
[15] DOLEZAL K, POPA I, HOLUB J, et al. Heterocyclic compound based on n6-substituted adenine, methods, of their preparation, their use for preparation of drugs, cosmetic preparations and growth regulators, pharmaceutical preparations, cosmetic preparations and growth regulators containing these compounds [M]. Google Patents. 2007.
[16] 梁丽娜, 郭平毅, 李奇峰. 我国除草剂产业现状, 面临的问题及发展趋势 [J]. 中国农业信息, 2006, 2): 8-9.
[17] 除草剂, 贺红武, 刘钊杰, et al. α-[2-(2.4-二氯苯氧基) 丙酰氧基] 烃基膦酸酯的合成与生物活性 [J]. 应用化学, 1998, 3(88-90.
[18] 廖新成, 刘伦, 郭艳春, et al. α-氨基膦酸酯衍生物的合成及其表征 [J]. 有机化学, 2006, 26(2): 233-5.
[19] 龙韫先,张克胜,邱德文. N-吡唑啉酮基-α-氨基膦酸酯的合成及其生物活性的研究 [J]. 高等学校化学学报, 1996, 08): 1247-9.
[20] 石德清, 刘军安, 盛梓良, et al. N-(α-芳氧丙酰基)α-氨基膦酸二苯酯的合成与除草活性 [J]. 农药学学报, 2002, 04): 79-82.
[21] 齐传民, 凌云. α—氨基膦酸酯和氨基膦酸的合成及其抗菌活性 [J]. 中国药物化学杂志, 2001, 11(6): 328-32.
[22] 卢水明, 陈茹玉. 1,3,4-噻二唑的α-氨基膦酸酯衍生物的合成及其生物活性 [J]. 合成化学, 1999, 03): 270-4.
[23] 汪焱钢, 卢冰熙, 叶文法, et al. α-(5-四唑基)氨基烃基膦酸酯的合成及其生物活性 [J]. 有机化学, 2002, 11): 862-6.
[24] DAVIS F A, WU Y, YAN H, et al. Asymmetric Synthesis of Aziridine 2-Phosphonates from Enantiopure Sulfinimines (N-Sulfinyl Imines). Synthesis of α-Amino Phosphonates [J]. The Journal of organic chemistry, 2003, 68(6): 2410-9.
[25] 刘国华, 杨军华, 禹小元, et al. α-[N-(4-羧基苯基)氨基]取代苯甲基膦酸酯的合成及生物活性研究 [J]. 厦门大学学报(自然科学版), 1999, S1): 408.
[26] 杨军, 卢冰熙, 汪焱钢, et al. 含三唑基的α-氨基芳基膦酸酯的合成与植物激素活性 [J]. 应用化学, 2002, 02): 117-20.
[27] 范会涛, 杨松, 陈卓, et al. 新型抗植物病毒活性化合物的合成及其作用机理研究新进展 [J].
[28] KOBAYASHI S, KIYOHARA H, NAKAMURA Y, et al. Catalytic asymmetric synthesis of α-amino phosphonates using enantioselective carbon-carbon bond-forming reactions [J]. Journal of the American Chemical Society, 2004, 126(21): 6558-9.
[29] 李慧英, 陈茹玉. N-(烷氧羰基或烷氧羰甲基-烷氧膦酰基)-α-氨基膦酸二苯酯的研究 [J]. 中国科学(B辑 化学), 1997, 02): 112-9.
[30] 宋宝安, 蒋木庚, 吴扬兰, et al. N-对三氟甲基苯基-α-氨基烷基膦酸酯的合成、晶体结构及生物活性 [J]. 有机化学, 2003, 09): 967-72+897.
[31] 万琼琼. 新型α-氨基膦酸酯及其酰胺衍生物的合成与生物活性研究 [D]; 贵州大学, 2007.
[32] 陈茹玉, 毛丽娟. N—三苯锗丙酰基—α—氨基膦酸酯的合成及其性质研究 [J]. 高等学校化学学报, 1995, 16(6): 892-5.
[33] 朱文娟. 含噻吩并[3,2-c]吡啶环的α-氨基膦酸酯类衍生物的合成及抗癌活性研究 [D]; 郑州大学, 2013.
[34] INOUE M, HIRATAKE J, SUZUKI H, et al. Identification of catalytic nucleophile of Escherichia coli γ-glutamyltranspeptidase by γ-monofluorophosphono derivative of glutamic acid: N-terminal thr-391 in small subunit is the nucleophile [J]. Biochemistry, 2000, 39(26): 7764-71.
[35] BERKOWITZ D B, EGGEN M, SHEN Q, et al. Ready access to fluorinated phosphonate mimics of secondary phosphates. synthesis of the (α, α-difluoroalkyl) phosphonate analogues of L-phosphoserine, L-phosphoallothreonine, and L-phosphothreonine [J]. The Journal of organic chemistry, 1996, 61(14): 4666-75.
[36] NAYDENOVA E, TROEV K, TOPASHKA-ANCHEVA M, et al. Synthesis, cytotoxicity and clastogenicity of novel α-aminophosphonic acids [J]. Amino acids, 2007, 33(4): 695-702.
[37] 李会娟. α-氨基烷基膦酸酯的绿色合成研究 [D]; 河南师范大学, 2011.
[38] CAVALIERI F, ASHOKKUMAR M, GRIESER F, et al. Ultrasonic synthesis of stable, functional lysozyme microbubbles [J]. Langmuir, 2008, 24(18): 10078-83.
[39] 陈伟华, 李维思, 李振江. 氨基磺酸催化无溶剂一锅法合成α-氨基膦酸酯 [J]. 应用化学, 2008, 07): 859-61.
[40] 张国平, 夏燕. 无溶剂一锅法Al(ClO_4)_3催化合成α-氨基膦酸酯 [J]. 有机化学, 2010, 03): 449-51.
[41] 王亮, 郑举敦, 韦景怡. 离子液体催化合成α-氨基膦酸酯 [J]. 山西化工, 2012, 06): 7-8+11.
[42] TAKACS A, PETZ A, KOLLAR L. Palladium-catalysed aminocarbonylation of iodoarenes and iodoalkenes with aminophosphonate as< i> N-nucleophile [J]. Tetrahedron, 2008, 64(37): 8726-30.
[43] 王伟, 张国平, 宋宝安, et al. O,O'-二烷基-α-(取代苯并噻唑-2-基)氨基-(取代苯基甲基)膦酸酯的合成与抗烟草花叶病毒活性 [J]. 有机化学, 2007, 02): 279-84.
[44] ZAHOUILY M, ELMAKSSOUDI A, MEZDAR A, et al. Three Components Coupling Catalysed by Na2CaP2O7: Synthesis of α-Amino Phosphonates Under Solvent-Free Conditions at Room Temperature [J]. Letters in Organic Chemistry, 2005, 2(5): 428-32.
[45] BHANUSHALI M J, NANDURKAR N S, JAGTAP S R, et al. ZrOCl2• 8H2O: An efficient catalyst for one-pot synthesis of α-amino phosphonates under solvent-free conditions [J]. Synthetic Communications®, 2009, 39(5): 845-59.
[46] AZIZI N, RAJABI F, SAIDI M R. A mild and highly efficient protocol for the one-pot synthesis of primary α-amino phosphonates under solvent-free conditions [J]. Tetrahedron letters, 2004, 45(50): 9233-6.
[47] WU J, SUN W, SUN X, et al. Expeditious approach to α-amino phosphonates via three-component solvent-free reactions catalyzed by NBS or CBr4 [J]. Green Chemistry, 2006, 8(4): 365-7.
[48] ZAHOUILY M, ELMAKSSOUDI A, MEZDAR A, et al. Natural phosphate and potassium fluoride doped natural phosphate catalysed simple one-pot synthesis of α-amino phosphonates under solvent-free conditions at room temperature [J]. Catalysis Communications, 2007, 8(3): 225-30.
[49] MAGHSOODLOU M T, HABIBI‐KHORASSANI S M, HEYDARI R, et al. Al (H2PO4) 3 as an Efficient and Reusable Catalyst for One‐pot Three‐component Synthesis of α‐Amino Phosphonates under Solvent‐free Conditions [J]. Chinese Journal of Chemistry, 2010, 28(2): 285-8.
[50] BHATTACHARYA A K, RANA K C. Amberlite-IR 120 catalyzed three-component synthesis of α-amino phosphonates in one-pot [J]. Tetrahedron Letters, 2008, 49(16): 2598-601.
[51] KABOUDIN B, NAZARI R. Microwave-assisted synthesis of 1-aminoalkyl phosphonates under solvent-free conditions [J]. Tetrahedron Letters, 2001, 42(46): 8211-3.
[52] YADAV J, REDDY B, EESHWARAIAH B, et al. Montmorillonite KSF clay catalyzed one-pot synthesis of α-aminonitriles [J]. Tetrahedron, 2004, 60(8): 1767-71.
[53] LEE S-G, LEE J K, SONG C E, et al. Microwave-assisted Kabachnik-Fields reaction in ionic liquid [J]. BULLETIN-KOREAN CHEMICAL SOCIETY, 2002, 23(5): 667-8.
[54] YANG S, GAO X-W, DIAO C-L, et al. Synthesis and Antifungal Activity of Novel Chiral α-Aminophosphonates Containing Fluorine Moiety [J]. Chinese Journal of Chemistry, 2006, 24(11): 1581-8.
[55] RANU B C, HAJRA A, JANA U. General procedure for the synthesis of α-amino phosphonates from aldehydes and ketones using indium (III) chloride as a catalyst [J]. Organic Letters, 1999, 1(8): 1141-3.
[56] XU F, LUO Y, DENG M, et al. One‐pot synthesis of α‐amino phosphonates using samarium diiodide as a catalyst precursor [J]. European Journal of Organic Chemistry, 2003, 2003(24): 4728-30.
[57] QIAN C, HUANG T. One-pot synthesis of α-amino phosphonates from aldehydes using lanthanide triflate as a catalyst [J]. The Journal of Organic Chemistry, 1998, 63(12): 4125-8.
[58] SAIDI M R, AZIZI N. A new protocol for a one-pot synthesis of α-amino phosphonates by reaction of imines prepared in situ with trialkylphosphites [J]. Synlett, 2002, 2002(08): 1347-9.
[59] XIA M, LU Y-D. Ultrasound-assisted one-pot approach to α-amino phosphonates under solvent-free and catalyst-free conditions [J]. Ultrasonics sonochemistry, 2007, 14(2): 235-40.
[60] LEE S-G, PARK J H. Ytterbium (III) triflate-catalyzed one-pot Mannich-type reaction in ionic liquid [J]. BULLETIN-KOREAN CHEMICAL SOCIETY, 2002, 23(10): 1367-8.
[61] YADAV J, REDDY B, SREEDHAR P. An eco-friendly approach for the synthesis of α-aminophosphonates using ionic liquids [J]. Green Chemistry, 2002, 4(5): 436-8.
[62] DISALE S T, KALE S R, KAHANDAL S S, et al. Choline chloride• 2ZnCl< sub> 2 ionic liquid: an efficient and reusable catalyst for the solvent free Kabachnik–Fields reaction [J]. Tetrahedron Letters, 2012, 53(18): 2277-9.
[63] 孔杜林. 含腺嘌呤和芳基脲的α-氨基膦酸酯衍生物的合成 [D]; 海南师范大学, 2011.
[64] 刘亚伟. 化学反应中温度的作用 [J]. 甘肃联合大学学报(自然科学版), 2012, S3): 68-9.
[65] 蒋志福. 新型含哌啶基的α-氨基膦酸酯类衍生物的合成及生物活性研究 [D]; 中国农业科学院, 2013.
[66] 张燕, 谷利军, 宿连征, et al. 含α-氨基膦酸酯齐墩果酸衍生物的合成 [J]. 安徽农业科学, 2012, 05): 2737-8.
[67] 龙宁. 含烷氧基的氰基丙烯酸酯、氰基丙烯酰胺及α-氨基膦酸酯衍生物的合成与生物活性研究 [D]; 贵州大学, 2008.
[68] AKIYAMA T, MORITA H, ITOH J, et al. Chiral Brønsted acid catalyzed enantioselective hydrophosphonylation of imines: asymmetric synthesis of α-amino phosphonates [J]. Organic letters, 2005, 7(13): 2583-5.
[69] WU J, SUN W, XIA H-G, et al. A facile and highly efficient route to α-amino phosphonates via three-component reactions catalyzed by Mg (ClO4) 2 or molecular iodine [J]. Organic & biomolecular chemistry, 2006, 4(9): 1663-6.
[70] MANDHANE P G, JOSHI R S, NAGARGOJE D R, et al. Thiamine hydrochloride (VB1): An efficient catalyst for one-pot synthesis of< i> α-aminophosphonates under ultrasonic irradiation [J]. Chinese Chemical Letters, 2011, 22(5): 563-6.
[71] BERNARDI L, ZHUANG W, J RGENSEN K A. An easy approach to optically active α-amino phosphonic acid derivatives by chiral Zn (II)-catalyzed enantioselective amination of phosphonates [J]. Journal of the American Chemical Society, 2005, 127(16): 5772-3.
[72] 傅献彩. 《化学平衡基本原理》简介 [J]. 华中师范大学学报(自然科学版), 1993, 01): 73.
[73] 武克瑞. 催化剂与催化作用 [J]. 中学化学教学参考, 1978, 04): 26-42.
[74] 任玉荣, 刘宇权, 艾亚男, et al. 催化剂的新定义——催化剂用量对催化剂活性影响的研究 [J]. 吉林师范大学学报(自然科学版), 2009, 03): 93-6.
[75] GR GER H, SAIDA Y, SASAI H, et al. A new and highly efficient asymmetric route to cyclic α-amino phosphonates: the first catalytic enantioselective hydrophosphonylation of cyclic imines catalyzed by chiral heterobimetallic lanthanoid complexes [J]. Journal of the American Chemical Society, 1998, 120(13): 3089-103.
[76] 张国平, 訾言勤, 夏燕, et al. Mg(ClO_4)_2一锅法合成α-氨基膦酸酯 [J]. 淮北师范大学学报(自然科学版), 2011, 02): 38-40.
[77] 杨桂生, 卢凤才. 催化剂用量对MC尼龙合成、形态与性能的影响 [J]. 高分子学报, 1992, 01): 15-22.
[78] HOSSEINI-SARVARI M. TiO< sub> 2 as a new and reusable catalyst for one-pot three-component syntheses of α-aminophosphonates in solvent-free conditions [J]. Tetrahedron, 2008, 64(23): 5459-66.
本文编号:19327
本文链接:https://www.wllwen.com/kejilunwen/huaxuehuagong/19327.html