MWCNTs纳米复合材料模拟酶催化的生物燃料电池及生物传感器研究
发布时间:2018-05-28 23:35
本文选题:模拟酶 + 葡萄糖 ; 参考:《宁夏大学》2017年硕士论文
【摘要】:当今,面对全球环境恶化和能源危机的挑战,人们在不断探寻利用可再生能源、生物质能源以及可变废为宝的清洁能源技术。生物燃料电池(BFC)被认为是具有发展潜力的新一代电能装置,传统的BFC是利用酶或微生物作为催化剂在环境友好的条件下将生物质燃料中的化学能转化为电能。虽然天然酶具有高度专一性和催化效率高等特点,但是酶电极容易受环境条件的影响,因而限制了 BFC的发展。为了克服酶电极的固有缺点,基于无机纳米材料为催化剂的模拟酶生物燃料电池得到发展。与天然酶相比,无机纳米材料模拟酶具有更为突出的优点,如制备成本低,易存储,以及组成结构可控等特点。因此开发低成本,生物相容性好,具有高催化活性的模拟酶纳米材料备受青睐。目前,已报道的模拟酶有:葡萄糖模拟酶、过氧化物模拟酶、氧化物模拟酶、以及超氧化物歧化模拟酶等。因此可以利用过氧化物模拟酶材料构建生物传感器,来检测样品中的H202,多壁碳纳米管(MWCNTs)具有大的比表面积、空腔结构以及特殊的电学性质,被看做是理想的负载相,用于负载或填载其它结构的材料,得到具有特殊性质的复合纳米材料。基于此,论文采用油胺还原法、水热法、水沉淀法分别合成了 Au nanowires、CuS/MWCNTs纳米复合物、Ce02/MWCNTs纳米复合物,构建了模拟酶BEC和模拟酶生物传感器。具体的研究内容如下:通过油胺(Oleylamine)还原法制备了一维金纳米线(Au nanowires),并将其与酸化的MWCNTs通过静电吸附作用将其层层组装到玻碳电极(GCE)上,得到一种可催化氧化葡萄糖的新型非酶生物燃料电池阳极(Au nanowires-MWCNTs/GCE)。结果表明:Au nanowires-MWCNTs/GCE对葡萄糖的电催化性能比单纯Au nanowires或MWCNTs修饰电极优良。基于此,以Au nanowires-MWCNTs/GCE电极为阳极,以电沉积Pt膜电极(Pt/GCE)为阴极,构建非酶葡萄糖/O2生物燃料电池,测试结果表明所构建的生物燃料电池的开路电位(OCP)为0.57V,在0.44V下呈现的最大功率密度(Pmmax)为0.28mW.cm-2。以CuC12为Cu源,L-半胱氨酸作为S源和还原剂,混酸处理的MWCNTs为原料,采用水热法一步合成了串珠状的具有葡萄糖模拟酶活性的CuS/MWCNTs纳米复合物。将CuS/MWCNTs纳米复合物修饰到GCE上,作为一种可催化氧化葡萄糖的新型非酶生物燃料电池阳极(CuS/MWCNTs/GCE)。结果表明:CuS/MWCNTs/GCE表现出比单纯CuS或MWCNTs修饰电极对葡萄糖拥有更优良的电催化性能。基于此,以CuS/MWCNTs/GCE为阳极,以Pt/GCE为阴极,构建非酶葡萄糖/O2生物燃料电池,测试结果表明所构建的生物燃料电池的OCP为0.87 V,在0.77V下呈现的 Pmax 为 0.22 mW·cm-2。利用水沉淀法合成了 Ce02/MWCNTs纳米复合物,利用氧化铈纳米粒子(Ce02NPs)具有的过氧化氢模拟酶性质,以Ce02/MWCNTs纳米复合物为模拟酶催化剂,构建非酶电化学生物传感器。结果表明,由于MWCNTs具有的特有性质使CeO2NPs包覆在MWCNTs表面,二者间的协同作用使该传感器对H202具有良好的电化学催化性能,并且该传感器具有良好的重复性和稳定性。采用方波伏安法(SWV)对H202进行了检测,可以得到在1.0×10-6~1O×10-3mol·L-1浓度范围内,H2O2的还原峰电流与其浓度呈良好的线性关系,对应的线性方程为△I(μA)=0.82 + 0.10 logc(mol·L-1),线性相关系数 R = 0.994,检测限为 2×10-8mol·L-1(S/N=3)。
[Abstract]:Nowadays, facing the challenges of global environmental degradation and energy crisis, people are constantly exploring clean energy technologies using renewable energy, biomass energy and variable waste. Biofuel battery (BFC) is considered to be a new generation of electric energy devices with potential for development. The traditional BFC is the use of enzyme or microorganism as a catalyst in the environment friend. The chemical energy in biomass fuels is converted into electrical energy under good conditions. Although natural enzymes have high specificity and high catalytic efficiency, the enzyme electrode is easily affected by the environmental conditions, thus limiting the development of BFC. In order to overcome the inherent disadvantages of the enzyme electrode, the simulated enzyme biological combustion based on the nano material without machine is used as the catalyst. Compared with natural enzymes, inorganic nanomaterial analog enzymes have more outstanding advantages, such as low preparation cost, easy storage and controllable composition. Therefore, the development of low cost, good biocompatibility and high catalytic activity of analog enzyme nanoscale is favored. At present, the simulated enzyme has been reported as glucose. Mimic enzymes, peroxidase mimics, oxide analogue enzymes, and superoxide dismutase mimic enzymes. Therefore, a biosensor can be constructed using a peroxidase mimic material to detect H202 in the sample. The multi wall carbon nanotube (MWCNTs) has a large specific surface area, cavity structure, and special electrical properties. It is regarded as an ideal load. In this paper, Au nanowires, CuS/MWCNTs nanocomposites, and Ce02/MWCNTs nanocomposites were synthesized by oleamine reduction, hydrothermal method and water precipitation method, and the simulated enzyme BEC and analog enzyme biosensors were constructed. The contents are as follows: the Au nanowires was prepared by the oleamine (Oleylamine) reduction method, and it was assembled on the glassy carbon electrode (GCE) with the acidified MWCNTs by electrostatic adsorption, and a new type of non enzyme bio fuel cell anode (Au nanowires-MWCNTs/GCE) that could catalyze the oxidation of glucose (Au nanowires-MWCNTs/GCE) was obtained. The results showed that: Au n. The electrocatalytic performance of anowires-MWCNTs/GCE on glucose is better than that of pure Au nanowires or MWCNTs modified electrode. Based on this, the Au nanowires-MWCNTs/GCE electrode as the anode, the electrodeposition of Pt membrane electrode (Pt/GCE) as the cathode and the Gou Jianfei enzyme glucose /O2 biofuel battery, the test results show the open circuit potential of the biofuel battery (O). CP) for 0.57V, the maximum power density (Pmmax) presented under 0.44V is 0.28mW.cm-2. with CuC12 as the Cu source, L- cysteine as a S source and a reductant, and the MWCNTs of the mixed acid is used as the raw material. The CuS/ MWCNTs nanocomposite with the glucose mimic enzyme activity is synthesized by the hydrothermal method. As a new type of non enzyme biofuel battery anode (CuS/MWCNTs/GCE), which can catalyze the oxidation of glucose, the results show that CuS/MWCNTs/GCE shows better electrocatalytic performance than pure CuS or MWCNTs modified electrode. Based on this, the non enzyme glucose /O2 organism is constructed with CuS/MWCNTs/GCE as the anode and Pt/GCE as the cathode. The test results show that the OCP of the biofuel battery is 0.87 V, and the Pmax is 0.22 mW. Cm-2. under 0.77V by using the water precipitation method to synthesize the Ce02/MWCNTs nanocomposite. Using the cerium oxide nanoparticles (Ce02NPs) with the properties of the hydrogen peroxide analogue enzyme, the Ce02/MWCNTs nanocomposite is used as the analog enzyme catalyst. A non enzyme electrochemical biosensor was constructed. The results showed that the CeO2NPs was coated on the MWCNTs surface due to the unique properties of MWCNTs. The synergism between the two made the sensor have good electrochemical catalytic performance for H202, and the sensor had good reproducibility and stability. H202 was examined by square wave voltammetry (SWV). In the range of 1 x 10-6 ~ 1O x 10-3mol / L-1, the reduction peak current of H2O2 has a good linear relationship with its concentration, the corresponding linear equation is delta I (mu A) =0.82 + 0.10 logC (mol L-1), the linear correlation coefficient R = 0.994, and the detection limit of 2 * 10-8mol.
【学位授予单位】:宁夏大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TB33;TM911.4
【参考文献】
相关期刊论文 前7条
1 刘剑洪;吴双泉;何传新;卓海涛;朱才镇;李翠华;张黔玲;;碳纳米管和碳微米管的结构、性质及其应用[J];深圳大学学报(理工版);2013年01期
2 陈迪航;李绵庆;;过氧化氢的应用领域与主要生产方法[J];化工技术与开发;2011年03期
3 覃奇贤;刘淑兰;;电极的极化和极化曲线(Ⅱ)——极化曲线[J];电镀与精饰;2008年07期
4 刘强;许鑫华;任光雷;王为;;酶生物燃料电池[J];化学进展;2006年11期
5 贾鸿飞,谢阳,王宇新;生物燃料电池[J];电池;2000年02期
6 杨晓云,莫金垣,詹淳;现代方波伏安法[J];分析测试学报;1998年03期
7 董绍俊;;化学修饰电极[J];化学通报;1981年12期
相关博士学位论文 前1条
1 罗志敏;石墨烯/无机纳米复合材料的制备及其催化传感应用研究[D];复旦大学;2012年
相关硕士学位论文 前1条
1 孙佳;食品中过氧化氢的检测方法研究[D];吉林农业大学;2014年
,本文编号:1948623
本文链接:https://www.wllwen.com/kejilunwen/huaxuehuagong/1948623.html