当前位置:主页 > 科技论文 > 化学工程论文 >

基于PAN-PZT铁电陶瓷的制备和性能研究

发布时间:2018-06-09 05:24

  本文选题:PAN-PZT + 场致应变 ; 参考:《上海师范大学》2015年硕士论文


【摘要】:具有良好压电、介电和机电耦合性能的PZT系列陶瓷到目前为止在压电材料应用领域一直占主导地位。为提高其铁电压电性能,PZT基二元陶瓷逐渐向三元和四元等多元组分系统发展。目前主要有两种掺杂方式可以实现多元组分系统材料的制备。一种是向PZT中添加已知的压电陶瓷材料,以综合了两者的优异性能,这种掺杂方式容易通过改变各成分含量和元素来调控材料性能;另一种是通过等价置换、硬性掺杂或软性掺杂来优化铁电材料的性能,例如PZT中Fe3+取代Zr4+或者Ti4+之后,由于晶体内部产生的内置电场抵消了部分外部电场,将会对掺杂后样品的电滞回线产生显著的影响。经优化后的材料是制造多层压电陶瓷电容器、精密微位移器、传感器、制动器、医用超声换能器等功能器件的理想材料。目前的研究大多集中在PZT基三元陶瓷上,比如Pb(Fe1/2Nb1/2)O3-Pb(Mg1/2Nb1/2)O3-Pb(Zr0.52Ti0.48)O3,Pb(Mn1/3Nb2/3)O3-Pb(Zn1/3Nb2/3)O3-Pb(Zr0.52Ti0.48)O3和Pb(Yb1/2Nb1/2)O3-Pb(Mn1/3Nb2/3)O3-Pb(Zr0.52Ti0.48)O3等,至今关于Pb Sr(Al1/2Nb1/2)O3-Pb(Zr0.52Ti0.48)O3的研究很少被报道。本论文第一部分主要对x PAN-PZT体系铁电陶瓷进行制备和表征,利用复合粒子(Al0.5Nb0.5)4+对PZT进行掺杂改性。采用固相反应法制备了x PANPZT体系铁电陶瓷,并对其结构和电学性能进行了表征。通过测试我们发现;随着x的增加,x PZN-PZT体系的相结构从四方相向三方相转变,经分析得出x PAN-PZT体系的准同型相界MPB在x=0.1-0.12附近。x=0.1的组分在室温下的最大应变量Stotal=0.33%,准静态压电系数d33为365 p C/N,剩余极化强度Pr为42μC/cm2,等效压电系数Smax/Emax为493 pm/V;对比各组分的性能,我们发现0.1PAN-0.9PZT的综合性能最为优异。本论文第二部分在上述最优组分的基础上通过A位等价替代方式掺杂Sr2+离子,然后系统研究掺杂量对材料相结构、压电、铁电和介电性能等方面影响。实验结果表明,Sr2+的掺杂对PAN-PZT体系的结构影响不大,没有观察到相变,但对性能有显著的影响。Sr2+的掺杂使得陶瓷的居里温度和最大相对介电常数直线下降。当Sr2+置换量为0.05 mol%时,试样的介电、压电铁电性能较优异,准静态压电系数d33=470 p C/N,剩余极化强度Pr为32.5μC/cm2,当Sr2+置换量为0.1 mol%时Stotal=0.34%,Spol=0.21%,但居里温度较低,Tm为220℃。
[Abstract]:PZT series ceramics with good piezoelectric, dielectric and electromechanical coupling properties have been dominant in the application of piezoelectric materials up to now. In order to improve its ferroelectric properties, PZT-based binary ceramics are gradually developed into ternary and quaternary multicomponent systems. At present, there are two kinds of doping methods to achieve the preparation of multicomponent system materials. One is to add known piezoelectric ceramic materials to PZT to synthesize the excellent properties of the two materials, which are easily controlled by changing the contents and elements of each component, and the other is by equivalent substitution. In order to optimize the properties of ferroelectric materials by hard doping or soft doping, for example, after Fe _ 3 replaces Zr _ 4 or Ti _ 4 in PZT, part of the external electric field is offset by the built-in electric field generated in the crystal. The hysteresis loop of doped samples will be significantly affected. The optimized material is an ideal material for the fabrication of multi-layer piezoelectric ceramic capacitors, precision micro-displacement devices, sensors, brakes, medical ultrasonic transducers and other functional devices. 鐩墠鐨勭爺绌跺ぇ澶氶泦涓湪PZT鍩轰笁鍏冮櫠鐡蜂笂,姣斿Pb(Fe1/2Nb1/2)O3-Pb(Mg1/2Nb1/2)O3-Pb(Zr0.52Ti0.48)O3,Pb(Mn1/3Nb2/3)O3-Pb(Zn1/3Nb2/3)O3-Pb(Zr0.52Ti0.48)O3鍜孭b(Yb1/2Nb1/2)O3-Pb(Mn1/3Nb2/3)O3-Pb(Zr0.52Ti0.48)O3绛,

本文编号:1999136

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/huaxuehuagong/1999136.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户a6825***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com