当前位置:主页 > 科技论文 > 化学工程论文 >

含镍络合废水处理技术研究

发布时间:2018-06-17 06:46

  本文选题: + 电镀废水 ; 参考:《华东理工大学》2015年硕士论文


【摘要】:电镀废水成分复杂,常含有多种对人体、环境有害的重金属,其中尤以镍较为典型,废水中含有的络合物成分可与镍离子形成金属络合物形式,大大增加了废水处理难度。本课题以含有典型络合物(酒石酸、柠檬酸、EDTA、氨)为代表的镀镍模拟废水为研究对象,采用Fenton、UV/H2O2等多种方法对其进行处理,研究各种方法对含络合剂电镀废水中镍的去除效果,并得出相应的最佳工艺处理条件,为实际含镍络合废水的处理提供依据。论文通过实验和理论计算得出,废水中酒石酸、柠檬酸、EDTA、氨等络合剂的存在,会影响含镍废水通过氢氧化物沉淀法的去除效果,为达到《电镀污染物排放标准》(GB21900-2008)中0.1 mg/L的排放标准,应降低废水中酒石酸、柠檬酸、EDTA、氨络合剂的浓度。对于酒石酸镍模拟废水,采用Fenton氧化法、UV/H2O2法处理效果较好。Fenton氧化法最佳工艺为:初始pH值3.0、30%H2O2投加量1.33 mL/L、n(Fe2+):n(H2O2)为1.4:1、反应时间1 h,沉淀pH值10.0,处理后镍浓度小于0.1 mg/L;UV/H2O2法最佳工艺为:初始pH值为3.0、30%H202加入量2 mL/L,15 W紫外灯光照120 min,沉淀pH值10.0,处理后镍浓度为0.36 mg/L。对于柠檬酸镍模拟废水,Fenton氧化法可取得较好效果,而采用UV/H2O2法处理效果不佳。Fenton氧化法最佳工艺为:在pH值为3.0,30%H2O2投加量1.33 mL/L,n(Fe2+):n(H2O2)为1.4:1,反应时间1 h,沉淀pH值10.0,处理后镍浓度可降至0.46 mg/L。对于EDTA-Ni模拟废水,采用阴离子交换树脂吸附处理能使其中镍满足达标要求,而采用Fenton氧化法、UV/H2O2法对其进行处理,处理效果均不佳。采用RX-21、RX-31型阴离子交换树脂,在废水流速为4 BV/h、流过树脂体积40 BV以下时,均能对镍去除产生良好作用。对于镍氨模拟废水,采用螯合树脂法、磷酸铵镁沉淀法对其进行处理,均有较好的去除效果。磷酸铵镁沉淀法最佳工艺为:水中n(Mg2+):n(PO43-):n(NH3)=1.2:1:1,反应pH值10.0,反应时间2 h,处理后镍浓度可低于0.1 mg/L。
[Abstract]:Electroplating wastewater contains a variety of heavy metals which are harmful to human body and environment, especially nickel, which can form metal complex with nickel ion, which greatly increases the difficulty of wastewater treatment. In this paper, nickel plating simulated wastewater with typical complex (tartaric acid, citrate EDTA, ammonia) as the research object was treated by Fentonon UV / H _ 2O _ 2 and other methods, and the removal effect of nickel in electroplating wastewater containing complex agent was studied. The optimal process conditions are obtained to provide the basis for the treatment of nickel containing complex wastewater. Through experiments and theoretical calculations, it is concluded that the presence of tartaric acid, citrate EDTA, ammonia and other complex agents will affect the removal efficiency of nickel containing wastewater by hydroxide precipitation. In order to meet the discharge standard of 0.1 mg / L in GB 21900-2008), the concentration of tartaric acid, citrate EDTA and ammonia complexing agent should be reduced. For nickel tartrate simulated wastewater, Using Fenton oxidation method to treat UV / H _ 2O _ 2 is better. Fenton oxidation method is as follows: initial pH value 3.0g / L ~ (30) H _ 2O _ 2 = 1.33 mL / L ~ (-1) H _ 2O _ 2 = 1.4: 1, reaction time 1 h, precipitation pH value 10.0. The best process is that the initial pH value is less than 0.1 mg / L ~ (-1) U _ (V / H _ 2O _ (2) H _ 2O _ 2) and the optimum process is: initial pH value is 1.33 mL 路L ~ (-1) H _ 2O _ 2, reaction time is 1 h, precipitation pH value is 10.0. The concentration of nickel was 0.36 mg 路L ~ (-1) 路L ~ (-1), pH value of precipitation was 10.0, and the amount of 2 mL 路L ~ (-1) ~ (-1) ~ (-1) H _ (20) was 2 mL 路L ~ (-1) ~ (-1) ~ (-1). The Fenton oxidation process for simulated wastewater of nickel citrate can obtain good results. The optimum conditions of UV / H _ 2O _ 2 treatment were as follows: 1.33 mL / L H _ 2O _ 2 = 1.33 mL 路L ~ (2 +) Fe _ (2) O _ (2) O _ (2) was 1.4: 1, reaction time was 1 h, pH value was 10.0, and the nickel concentration could be reduced to 0.46 mg 路L ~ (-1) after treatment. For EDTA-Ni simulated wastewater, the adsorption of nickel with anion exchange resin can make the nickel meet the standard, while Fenton oxidation and UV / H _ 2O _ 2 are used to treat the wastewater, and the treatment effect is not good. When the flow rate of wastewater is 4 BV / h and the volume of the resin is below 40 BV, the removal of nickel can be achieved by using RX-21 / RX-31 anion exchange resin. The nickel ammonia simulated wastewater was treated by chelating resin method and magnesium ammonium phosphate precipitation method. The optimum process of ammonium magnesium phosphate precipitation is as follows: in water, the concentration of nickel can be less than 0.1 mg / L, the reaction pH value is 10.0, the reaction time is 2 h, the reaction pH value is 10.0, the reaction time is 2 h, and the concentration of nickel is less than 0.1 mg 路L ~ (-1).
【学位授予单位】:华东理工大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:X781.1

【参考文献】

相关期刊论文 前10条

1 占稳;胡立新;沈瑞敏;程骄;欧阳贵;陈雪梅;;添加剂对酒石酸盐镀铜的影响[J];电镀与涂饰;2009年12期

2 孔纲;吴双;卢锦堂;林德鑫;王霞;黎汉昌;;柠檬酸及其盐在金属防护中的应用研究现状[J];电镀与涂饰;2011年11期

3 乐薇;封孝华;;滴定法测定H_2O_2含量的不确定度研究[J];广东化工;2011年10期

4 周勤;苏彩燕;袁笑一;吴友明;;重金属捕集剂WY5处理综合铜、镍废水的研究[J];工业水处理;2006年04期

5 崔东;刘定富;;柠檬酸-丁二酸双配位剂体系化学镀镍的研究[J];电镀与环保;2012年06期

6 刘定富;崔东;;乳酸-EDTA双配位剂体系化学镀镍的研究[J];电镀与环保;2013年03期

7 姜述芹,周保学,于秀娟,蔡伟民,周定;含镍废水的氢氧化镁净化研究[J];哈尔滨工业大学学报;2003年10期

8 王文忠;黄少斌;;亚胺基二乙酸树脂对金属镍的静态吸附及连续逆流U形解吸系统[J];化工进展;2009年11期

9 胡昊,孙向阳,江辉;粉煤灰吸附含镍废水的研究[J];环境保护科学;2005年04期

10 陈琳,杜瑛s,

本文编号:2030127


资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/huaxuehuagong/2030127.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户2139d***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com