当前位置:主页 > 科技论文 > 化学工程论文 >

多层泡沫镍体系提高氢氧化镍纳米片电极的循环性能

发布时间:2018-06-17 23:20

  本文选题:氢氧化镍 + 多层泡沫镍 ; 参考:《太原理工大学》2017年硕士论文


【摘要】:化石能源危机问题的日益突出以及由于大量使用化石燃料带来的越来越严重的环境问题给人类带来了极大的困扰,开发利用清洁可再生能源成为人类实现可持续发展的必要任务。但是新能源的高效利用离不开性能优异的储能器件,作为储能器件的超级电容器由于其环境友好、功率密度高、循环寿命长、使用温度范围宽等优点成了国内外广大研究者们的新宠。而开发高性能的超级电容器储能器件离不开设计制备性能优异的材料以及对电极材料的合理组装。以双电层电容为基础的碳材料超级电容器因其理论容量不高而发展受限,而过渡金属氢氧化物因其具有高的理论容量引发了研究者们的兴趣,其中氢氧化镍又以其廉价、无毒、环境友好等优点而备受青睐。然而,氢氧化镍属于半导体材料,较差的导电性导致了氢氧化镍电极材料较差的倍率性能和循环性能。在本论文中,我们通过简单的水热合成方法制备了不同纳米尺寸的片状氢氧化镍电极材料。为了提升氢氧化镍电极材料的循环性能,我们改善了电极的制备方法,将传统的单层泡沫镍体系扩展为多层泡沫镍体系(实际为4层泡沫镍)。本文的主要内容如下:1.以NiCl_2·6H_2O和NH_4(CO_3)_2为原料,利用水热合成的方法制备出了Ni(HCO_3)_2,将所得到的Ni(HCO_3)_2浸泡在6 M的KOH溶液中得到了尺寸约为14.5 nm的氢氧化镍纳米片。分别采取传统单层泡沫镍体系和多层泡沫镍体系制备出两个电极(N1和N3),电化学结果证实在5 A g~(-1)的电流密度下,N1和N3电极的容量分别为482.9和524.5 C g~(-1);经1000圈的循环过后,N1和N3电极的容量保持率分别为59.1%和83.8%。显然,多层泡沫镍体系大大提高了氢氧化镍纳米片电极的循环稳定性,并在此基础上提出了改良电极的工作机理,探究了其能提高电极材料循环性能的原因。2.以NiCl_2·6H_2O和Na_2CO_3为原料,利用水热合成的方法制备出了尺寸约为150 nm的片状氢氧化镍。分别采取传统单层泡沫镍体系和多层泡沫镍体系制备出两个电极(A1和A3),电化学结果证实在5 A g~(-1)的电流密度下,经1000圈的循环过后,两电极的容量保持率分别为42%和80%。显然,多层泡沫镍体系不仅适用于超小片状纳米体系的电极材料,还适用于其他大尺寸片状纳米体系的电极材料,具有一定的普遍性。
[Abstract]:The problem of fossil energy crisis is becoming more and more prominent, and the environmental problems caused by the heavy use of fossil fuels have brought great troubles to human beings. Development and utilization of clean and renewable energy has become a necessary task for human to achieve sustainable development. However, the efficient utilization of new energy can not be separated from energy storage devices with excellent performance. As energy storage devices, supercapacitors are environmentally friendly, have high power density, and have long cycle life. Using the advantages of wide temperature range has become a new favorite of researchers at home and abroad. The development of high performance supercapacitor energy storage devices can not be separated from the design of excellent materials and the reasonable assembly of electrode materials. The development of carbon supercapacitors based on double layer capacitors is limited because of their low theoretical capacity, while transition metal hydroxides have attracted the interest of researchers because of their high theoretical capacity. Among them, nickel hydroxide is cheap and non-toxic. Environmental friendly and other advantages are favored. However, nickel hydroxide is a semiconductor material. The poor conductivity leads to the poor performance of the nickel hydroxide electrode material. In this thesis, we prepared different nanoscale nickel hydroxide electrode materials by simple hydrothermal synthesis method. In order to improve the cycling performance of nickel hydroxide electrode materials, we have improved the preparation method of the electrode, and extended the traditional single-layer nickel foam system to a multi-layer nickel foam system (actually, four layers of nickel foam). The main contents of this paper are as follows: 1. NiHCO3s were prepared by hydrothermal synthesis from the NiCl26H _ 2O and NH _ 4C _ C _ 3s _ 2 as the raw materials. The NiHCO3T _ 2 was soaked in the 6M Koh solution to obtain the nickel hydroxide nanocrystals of about 14.5 nm. Two electrodes, N 1 and N 3, were prepared by conventional single layer nickel foam system and multilayer nickel foam system, respectively. The electrochemical results show that the capacities of N 1 and N 3 electrodes are 482.9 and 524.5 C / g ~ (-1) at the current density of 5 A g / g ~ (-1), respectively, and the results show that the N _ (1) and N _ (3) electrodes are cyclic in 1000 cycles. The capacity retention rates of N1 and N3 electrodes were 59.1% and 83.8%, respectively. It is obvious that the multilayer nickel foam system can greatly improve the cycling stability of nickel hydroxide nanocrystalline electrode. On this basis, the working mechanism of the modified electrode is put forward, and the reason why it can improve the cycling performance of the electrode material is explored. Using NiCl26H _ 2O and Na _ 2CO _ 3 as raw materials, the size of nickel hydroxide (150 nm) was prepared by hydrothermal synthesis. Two electrodes, Al and A3N, were prepared by conventional single layer nickel foam system and multilayer nickel foam system, respectively. The electrochemical results show that at the current density of 5 A g ~ (-1), after 1000 cycles, the capacity retention rates of the two electrodes are 42% and 80%, respectively. It is obvious that the multilayer nickel foam system is suitable not only for the electrode materials of ultrasmall sheet nanosystems, but also for the electrode materials of other large scale sheet nanosystems, which has a certain universality.
【学位授予单位】:太原理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TQ138.13;TM53

【相似文献】

相关期刊论文 前10条

1 田周玲,矫庆泽,赵芸;氢氧化镍纳米棒的水热制备及其表征[J];高等学校化学学报;2005年08期

2 傅小明;孙浩;王幸福;刘照文;;水热法合成β型氢氧化镍纳米片及其生长机理[J];无机盐工业;2011年11期

3 王立光,胡泽善,赖容,陈国良,胡煜;纳米氢氧化镍的制备及摩擦学性能[J];石油学报(石油加工);2000年06期

4 赵力,周德瑞,张翠芬;纳米氢氧化镍的研制及其电化学性能[J];化学通报;2001年08期

5 陈腾飞,贺万宁;添加剂对氢氧化镍电位性能的影响[J];矿冶工程;2001年01期

6 郭建忠,赵丽华,李志萍,薛永强;氢氧化镍超微粉的制备研究及微观结构分析[J];陶瓷学报;2003年03期

7 余丹梅,陈昌国,文莉,周上祺;锌的添加方式对氢氧化镍结构和性能的影响[J];化学通报;2004年07期

8 田周玲,矫庆泽;水热法制备氢氧化镍纳米线[J];无机化学学报;2004年12期

9 张建平,周浩然,许茂;透射电镜在不同分散条件下测定纳米氢氧化镍的粒度和分布[J];化学工程师;2005年06期

10 吴梅银,王建明,张鉴清,曹楚南;掺锰氢氧化镍的结构与电化学性能(英文)[J];物理化学学报;2005年05期

相关会议论文 前10条

1 赵斌;陈慧兰;;氢氧化镍、氧化镍多孔球的制备及催化应用[A];中国化学会第二十五届学术年会论文摘要集(上册)[C];2006年

2 董丽红;褚莹;;可控制备不同形貌的氢氧化镍和多孔氧化镍的纳米结构[A];中国化学会第26届学术年会胶体与界面化学分会场论文集[C];2008年

3 黄亮国;朱燕娟;周焯均;叶贤聪;伍尚改;郑汉忠;林晓然;;超声波沉淀法合成纳米氢氧化镍及其复合电极电化学性能研究[A];第七届中国功能材料及其应用学术会议论文集(第7分册)[C];2010年

4 董琪;韩恩山;闫艳波;;含有晶种的母液在氢氧化镍制备中的循环使用[A];中国化学会第二十五届学术年会论文摘要集(下册)[C];2006年

5 董琪;韩恩山;闫艳波;徐海江;;表面活性剂在氢氧化镍制备中作用的研究[A];中国化学会第十届胶体与界面化学会议论文摘要集[C];2004年

6 李悦明;李玮tR;O词趵,

本文编号:2032902


资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/huaxuehuagong/2032902.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户bc36f***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com