当前位置:主页 > 科技论文 > 化学工程论文 >

选择性催化导电水凝胶电极膜的构建及其在植入体表层葡萄糖电池的应用

发布时间:2018-06-25 22:53

  本文选题:PtNPs + 导电水凝胶 ; 参考:《北京科技大学》2017年博士论文


【摘要】:随着低功耗微机电植入器件的发展,为植入微功耗器件提供长期稳定电能供应又成了研究热点。研究结构简单、性能长期稳定、生物安全性高的非生物催化植入葡萄糖燃料电池是解决体内供电问题的可行途径。植入体表层葡萄糖燃料电池是非生物催化葡萄糖燃料电池中极具发展前途的一类电池,其主要的优势为:利用植入器件的表面作为电池电极,不需要再植入额外的电池壳体。然而这种燃料电池目前还存在电活性面积低、制备工艺复杂、植入免疫排斥以及燃料共混造成的电化学短路等问题,上述问题只有通过改造植入体表层葡萄糖燃料电池的电极膜材料设计,才有可能会得到改善。有些多孔导电水凝胶除了具有离子导电和电子导电的双重特性外,还拥有良好的生物相容性,设计制备具有选择性催化功能的多孔导电水凝胶作为植入体表层葡萄糖燃料电池的电极膜极具探索价值。本文针对植入体表层葡萄糖燃料电池存在的问题,根据植入体表层葡萄糖燃料电池的原理和导电水凝胶的特性,设计制备了三种多孔导电水凝胶网络结构作为植入体表层葡萄糖燃料电池的电极膜,通过多种途径对其结构和组成进行调整,以提升电极膜导电性和电化学活性,并最终实现其对富氧中性磷酸缓冲溶液(PBS)中的葡萄糖的选择性催化功能,这为选择性催化多孔导电水凝胶在植入体表层葡萄糖燃料电池中的应用提供了实验基础和理论依据。具体研究工作和结果如下:根据多壁碳纳米管(MWCNTs)良好的导电性和电催化活性以及聚乙烯醇(PVA)的水凝胶特性,设计了 MWCNTs和PVA双网络多孔导电水凝胶,并通过电泳沉积(EPD)和冷冻解冻循环交联工艺,制备了 MWCNTs/PVA导电水凝胶电极膜。通过对MWCNTs/PVA电极膜的电化学性能和微观结构的表征,表明了 MWCNTs/PVA水凝胶电极膜具有高亲水性的多孔导电水凝胶网络结构,虽然MWCNTs/PVA导电水凝胶电极膜对的PBS溶液中的葡萄糖没有明显的催化活性,但对多巴胺和pH9的碱性溶液中的葡萄糖有明显的催化活性,该电极膜有可能用于植入在人体肠道的葡萄糖燃料电池。基于纳米铂(PtNPs)的良好电催化活性,设计了 MWCNTs、PVA和PtNPs三元多孔导电水凝胶。并利用十六烷基溴化铵(CTAB)与氯铂酸(CPA)的静电吸附原理以及柠檬酸(VC)的温和的化学还原性,在MWCNTs/PVA多孔导电水凝胶膜上实现了高载量的PtNPs负载。通过对PtNPs/MWCNTs/PVA电极膜的电化学性能测试以及微观结构的表征,PtNPs/MWCNTs/PVA导电水凝胶电极膜虽然不具有在富氧环境中对葡萄糖的选择性催化能力,但该电极膜具有高电活性面积、低的表面电荷传递电阻以及良好的扩散通透性等电化学特性基础上,对中性的PBS溶液中葡萄糖的具有良好的电催化活性,该电极膜可用于阴极耗氧叠层植入葡萄糖燃料电池。利用细菌纤维素(BC)的天然纳米网孔结构、MWCNTs的良好导电性、PtNPs的良好电催化活性,设计了 PtNPs、MWCNTs、BC三元多孔叠层导电水凝胶。并利用超声辅助的电泳沉积工艺,实现了 MWCNTs在BC薄膜上的渗入掺杂,从而保证了电极膜同时具有离子导电和电子导电的双重特性;还利用BC对氯铂酸的吸附能力和硼氢化钠的强还原性,实现了在MWCNTs/BC多孔叠层导电水凝胶电极膜上的高载量PtNPs复合。通过对PtNPs/MWCNTs/BC导电水凝胶电极膜电化学性能的测试以及微观结构的表征,该电极膜不仅具有高电活性面积、低的表面电荷传递电阻以及良好的扩散通透性等电化学特性,而且对PBS溶液中葡萄糖表现出了较高的催化活性的基础上,最重要的发现是:该电极膜对富氧PBS溶液中的葡萄糖具有选择催化性。PtNPs/MWCNTs/BC电极膜的多孔叠层结构和PtNPs的高载量离散分布态是PtNPs/MWCNTs/BC导电水凝胶电极膜具有选择性催化葡萄糖能力的原因,该电极膜可用于植入葡萄糖燃料表层电池。将PtNPs/MWCNTs/BC导电水凝胶电极膜作为阳极膜和MWCNTs/BC导电水凝胶电极膜作为阴极膜构建了植入体表层葡萄糖电池。在接近生理氧浓度和葡萄糖浓度的PBS溶液中,PtNPs/MWCNTs/BC-MWCNTs/BC葡萄糖燃料电池的最大功率密度达到了 2.75 ± 0.2 μWcm-2,该燃料电池还表现出了极好的溶解氧耐受度。利用浸提液细胞计数实验(CCK-8)和在材料表面培养骨髓间质干细胞(MSC)的方法对PtNPs/MWCNTs/BC和MWCNTs/BC导电水凝胶电极膜的生物相容性进行了评价,该电极膜表现出了良好的生物相容性。上述研究表明:PtNPs/MWCNTs/BC选择性催化导电水凝胶电极膜用于植入体表层葡萄糖电池的电极膜较为可行,该研究为长期稳定和生物安全性的体内自供电器件的研究和应用提供了新的材料体系和结构设计。
[Abstract]:With the development of low power microelectromechanical implants, it has become a hot spot to provide long-term stable power supply for the implanted micro power devices. The study of simple structure, long-term stability and high biosafety non biocatalytic implantation of glucose fuel cell is a feasible way to solve the problem of power supply in the body. The pool is a very promising type of battery in the non biocatalytic glucose fuel cell. Its main advantage is that the surface of the implanted device is used as the battery electrode and no additional battery shell is needed. However, this fuel cell has a low electroactive area, complex preparation process, implanting immune rejection and co fuel. Only through the modification of the electrode membrane material of the glucose fuel cell on the surface of the implant, it is possible to improve it. Some porous conductive hydrogels have good biocompatibility besides the dual characteristics of ionic conduction and electronic conduction, and the design preparation has a choice. Porous conductive hydrogels with sexual catalytic function are of great value as the electrode membrane of the glucose fuel cell on the surface of the implant. In this paper, three kinds of porous conductive hydrogels are designed and prepared on the basis of the principle of the glucose fuel cell on the surface of the implant and the specificity of the conductive hydrogel. As the electrode membrane of the glucose fuel cell on the surface of the implant, the network structure adjusts its structure and composition through a variety of ways to improve the conductivity and electrochemical activity of the electrode membrane, and finally realize the selective catalytic function of the glucose in the oxygen rich neutral phosphate buffer solution (PBS). This is a selective catalysis for the porous conductive water. The gel has provided experimental basis and theoretical basis for the application of the glucose fuel cell on the surface of the implant. The specific research work and results are as follows: according to the good conductivity and electrocatalytic activity of MWCNTs and the hydrogel properties of polyvinyl alcohol (PVA), the MWCNTs and PVA double network porous conductive hydrogels are set up. MWCNTs/PVA conductive hydrogel electrode film was prepared by EPD and freezing thawing cyclic crosslinking process. The electrochemical performance and microstructure of the MWCNTs/PVA electrode film showed that the MWCNTs/PVA hydrogel electrode film has a high hydrophilic porous conductive water gel network structure, although MWCNTs/PVA electric hydrogel electricity is electric. The polar membrane has no obvious catalytic activity for glucose in the PBS solution, but it has obvious catalytic activity for the glucose in the alkaline solution of dopamine and pH9. The electrode membrane may be used to implant glucose fuel cells in the human intestine. Based on the good electrocatalytic activity of nano platinum (PtNPs), MWCNTs, PVA and PtNPs are designed for more than three yuan. With the electrostatic adsorption of sixteen alkyl ammonium bromide (CTAB) and chlorinated platinum acid (CPA) and the mild chemical reducibility of citric acid (VC), the PtNPs load of high load was realized on the MWCNTs/PVA porous conductive hydrogel membrane. The electrochemical properties of the PtNPs/MWCNTs/PVA electropolar membrane and the characterization of the microstructure were characterized. Although the PtNPs/MWCNTs/PVA conductive hydrogel electrode film does not have the ability to selectively catalyze glucose in the oxygen rich environment, the electrode film has a high electroactive area, low surface charge transfer resistance and good diffusion permeability and so on, it has good electrocatalysis for glucose in neutral PBS solution. The electrode membrane can be used for the implantation of the cathode oxygen depletion layer to the glucose fuel cell. Using the natural nano mesh structure of the bacterial cellulose (BC), the good electrical conductivity of MWCNTs and the good electrocatalytic activity of PtNPs, a PtNPs, MWCNTs, BC three element porous laminated conductive hydrogel is designed. And the ultrasonic assisted electrophoretic deposition technology is used to realize the MWCNT The infiltration and doping of s on the BC film guarantee the dual characteristics of both ionic conduction and electronic conduction, and the high load PtNPs recombination on the MWCNTs/BC porous conductive hydrogel electrode film is realized by using BC for the adsorption capacity of chloroplatinate and the strong reducibility of sodium borohydride. By conducting a conductive hydrocoagulation to PtNPs/MWCNTs/BC. The electrochemical properties of the colloid electrode film and the characterization of the microstructure are not only characterized by high electroactive area, low surface charge transfer resistance and good diffusion permeability, but also on the basis of high catalytic activity for glucose in PBS solution. The most important discovery is that the electrode membrane is used. The glucose in the oxygen rich PBS solution has the porous layer structure of the selective catalytic.PtNPs/MWCNTs/BC electrode membrane and the high load discrete distribution of the PtNPs, which is the reason for the selective catalytic glucose ability of the PtNPs/MWCNTs/BC conductive hydrogel electrode membrane. The electrode membrane can be used to implant the surface battery of the glucose fuel surface. PtNPs/MWCNTs/BC conduction is conductive. The water gel electrode membrane was used as the anode film and the MWCNTs/BC conductive hydrogel electrode membrane as the cathode membrane to construct the glucose battery on the surface of the implant. The maximum power density of the PtNPs/MWCNTs/BC-MWCNTs/BC glucose fuel cell reached 2.75 + 0.2 Wcm-2 in the PBS solution near the physiological oxygen concentration and the glucose concentration, and the fuel cell was also used. Excellent tolerance to dissolved oxygen was shown. The biocompatibility of PtNPs/MWCNTs/BC and MWCNTs/BC conductive hydrogel electrode membranes was evaluated by the method of extraction cell count (CCK-8) and bone marrow mesenchymal stem cell (MSC) culture on the surface of the material. The electrode membrane showed good biocompatibility. The above study showed that PtNP It is more feasible to use s/MWCNTs/BC to selectively catalyze the electrode film of the conductive hydrogel electrode for the implant surface glucose battery. This study provides a new material system and structure design for the research and application of the self powered devices in the body for long-term stability and biosafety.
【学位授予单位】:北京科技大学
【学位级别】:博士
【学位授予年份】:2017
【分类号】:TQ427.26;TM911.4

【参考文献】

相关期刊论文 前7条

1 刘树敏;郑裕东;李伟;孙乙;岳丽娜;赵振江;;聚乙烯醇/酸化碳纳米管高亲水性三维孔电极膜的制备与电化学性能[J];高等学校化学学报;2016年02期

2 邵亮;柳明珠;邱建辉;高春梅;张国宏;秦利军;;导电水凝胶的制备[J];化学进展;2011年05期

3 林德盟;车剑飞;;水凝胶修饰生物兼容性电极[J];化学进展;2010年06期

4 ;Synthesis, characterization and swelling properties of a chemically cross-linked poly(vinyl alcohol) hydrogel[J];Frontiers of Chemistry in China;2007年02期

5 杨连利;梁国正;;水凝胶在医学领域的热点研究及应用[J];材料导报;2007年02期

6 武旭业,黄世文,张建涛,卓仁禧;物理交联聚乙烯醇/羟基末端聚酰胺-胺树型高分子水凝胶的制备与性质研究[J];高等学校化学学报;2004年02期

7 王宗花,刘军,颜流水,王义明,罗国安;羧基化碳纳米管嵌入石墨修饰电极对多巴胺和抗坏血酸的电催化[J];分析化学;2002年09期

相关硕士学位论文 前1条

1 韦晓娟;植入式微型医疗器械供电方法研究[D];中国科学院研究生院(理化技术研究所);2008年



本文编号:2067865

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/huaxuehuagong/2067865.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户6120c***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com