戊烷—水直接接触相变换热的实验研究与理论分析
本文选题:直接接触换热 + 真实传热温差 ; 参考:《天津大学》2015年博士论文
【摘要】:直接接触换热作为新型高效节能换热器的核心技术是能源研究的重点,直接接触式换热没有金属换热面,具有传热热阻低、换热系数高、结构简单、不易腐蚀和结垢等传统间壁换热无法比拟的优势。应用直接接触换热技术可以减小换热器的换热温差,提高换热器的换热效率。本文拟从戊烷-水直接接触换热的真实传热温差,泡滴群传热的机理,换热器传热性能三个方面开展理论与实验研究。目的在于为提高直接接触换热效率提供依据,并对强化换热技术提供理论指导,为能源的高效利用和解决世界的能源问题开发新思路。首先,提出了一种新型的实验方法来研究戊烷-水直接接触汽化传热,通过搭建戊烷与水的直接接触闭路循环实验装置,使得戊烷-水液液直接接触界面的接触面积保持不变,并且水在界面上各点的速度均相同。采用红外热像法研究戊烷-水直接接触界面的真实传热温差,结果表明其真实的传热温差远远小于传统算法得到的传热温差,因此得到的传热系数也远远大于基于传统传热温差得到的传热系数。在此基础上研究流量和真实传热温差对传热系数的影响。实验揭示了传热热阻主要集中在水主体与界面水的混合程度上的机理。其次,采用频闪摄像法研究二维体中戊烷泡滴群在连续相水中的汽化传热过程,采用统计学方法研究泡滴在不同戊烷进口流量,水温及不同高度条件下戊烷泡滴分布情况,同时研究了不同实验条件对戊烷泡滴的Sauter平均直径,汽化率、泡滴上升速度、戊烷泡滴的戊烷-水液液界面的传热面积及戊烷泡滴传热系数的影响规律。根据实验结果对传热区域进行划分,表明流体湍动越剧烈传热能力越强。最后,搭建戊烷-水直接接触换热系统,考察了分散相戊烷进口流量、水的温度和分布器孔径对体积换热系数的影响,并依据传热机理详细分析了直接接触换热器换热性能的影响因素,与加入填料的换热器进行对比,研究了填料对换热的强化作用。
[Abstract]:Direct contact heat transfer is the key technology of energy research. Direct contact heat transfer has low heat resistance, high heat transfer coefficient and simple structure. It is not easy to corrode and scale and other traditional interwall heat transfer can not be compared with the advantages. The application of direct contact heat transfer technology can reduce the heat transfer temperature difference and improve the heat transfer efficiency of the heat exchanger. In this paper, theoretical and experimental studies are carried out on the real heat transfer temperature difference of pentane water direct contact heat transfer, the heat transfer mechanism of bubble droplet group and the heat transfer performance of heat exchanger. The purpose of this paper is to provide the basis for improving the efficiency of direct contact heat transfer and to provide theoretical guidance for strengthening heat transfer technology, so as to develop new ideas for the efficient utilization of energy and the solution of energy problems in the world. First of all, a new experimental method is proposed to study the vaporization heat transfer of pentane-water direct contact. The contact area of the direct contact interface between pentane and water remains unchanged by setting up a closed circuit experimental device for the direct contact between pentane and water. And the velocity of water at all points on the interface is the same. The real heat transfer temperature difference between pentane and water directly contact interface is studied by infrared thermal image method. The results show that the real heat transfer temperature difference is much smaller than that obtained by traditional algorithm. Therefore, the heat transfer coefficient obtained is much larger than that based on the traditional heat transfer temperature difference. On this basis, the influence of flow rate and real heat transfer temperature difference on heat transfer coefficient is studied. The experimental results show that the heat transfer resistance is mainly concentrated on the mixing degree between the water body and the interface water. Secondly, the vaporization and heat transfer process of pentane bubble droplets in continuous phase water was studied by stroboscopic camera, and the distribution of pentane bubble droplets at different flow rate, water temperature and height was studied by statistical method. The effects of different experimental conditions on the Sauter mean diameter, vaporization rate, droplet rising rate, the heat transfer area of the pentane droplet's pentane liquid-liquid interface and the heat transfer coefficient of the pentane bubble droplet were also studied. According to the experimental results, the heat transfer region is divided, which shows that the more intense the fluid turbulence, the stronger the heat transfer ability. Finally, the direct contact heat transfer system between pentane and water was built, and the influence of the inlet flow rate of dispersed pentane, the temperature of water and the pore diameter of distributor on the volumetric heat transfer coefficient was investigated. Based on the heat transfer mechanism, the factors affecting the heat transfer performance of the direct contact heat exchanger are analyzed in detail, and compared with the heat exchanger with the filler, the enhancement effect of the filler on the heat transfer is studied.
【学位授予单位】:天津大学
【学位级别】:博士
【学位授予年份】:2015
【分类号】:TQ021.3
【相似文献】
中国期刊全文数据库 前10条
1 程序;张呈平;吕剑;;十氟戊烷的合成研究进展[J];化工生产与技术;2007年05期
2 陈葆新;;用戊烷作冷冻干燥猪肉的(酉合)败指标[J];天津食品科研;1982年01期
3 孙树烈;;高纯度戊烷油的研制与工业生产[J];齐鲁石油化工;1989年02期
4 孙树烈;;高纯度戊烷油的研制与工业生产[J];石油炼制与化工;1990年06期
5 苏艳;宋鹏翔;;大豆油、葵花油中戊烷含量的气相色谱分析[J];粮食储藏;1991年05期
6 江镇海;戊烷发泡剂通过省技术鉴定[J];精细石油化工;1998年03期
7 ;广州石化开发出精制戊烷产品[J];辽宁化工;2004年04期
8 徐卫国;;1,1,1,3,3,5,5,5-八氟戊烷的制备与应用[J];浙江化工;2005年12期
9 ;戊烷油的分离和精制[J];齐鲁石油化工;1981年05期
10 ;广州石化开发出精制戊烷产品[J];广东化工;2004年07期
中国重要会议论文全文数据库 前6条
1 田玉峰;孙津生;王志恒;李国忠;张庆江;王锐;刘海波;;50 kt/a混合戊烷同分异构体的精细分离[A];2005年全国塔器及塔内件技术研讨会会议论文集[C];2005年
2 高福磊;姬月萍;陈斌;汪营磊;刘卫孝;丁峰;兰英;;1,5-二叠氮基-3-硝基氮杂戊烷合成新方法研究[A];第十六届中国科协年会——分9含能材料及绿色民爆产业发展论坛论文集[C];2014年
3 吴铁锁;姚克俭;;脱戊烷系统的模拟与优化[A];智能化石油化工厂和乙烯、聚烯烃装置运营管理技术研讨会论文集[C];2005年
4 郭仕清;;开发生产戊烷发泡剂[A];新世纪 新机遇 新挑战——知识创新和高新技术产业发展(下册)[C];2001年
5 孙耿;范小兵;寇元;蒋鸿;;DFT方法和实验对乙二醇相费托反应中二氧戊烷生成机理的研究[A];第十四届全国青年催化学术会议会议论文集[C];2013年
6 秦勇;钱岭;阎子峰;;汽油蒸气分离戊烷用活性炭的表面化学改性[A];第十一届全国青年催化学术会议论文集(上)[C];2007年
中国重要报纸全文数据库 前1条
1 记者 赵凤莉 通讯员 于雁雁;亚洲最大戊烷精分装置“卡边”控制[N];中国化工报;2009年
中国博士学位论文全文数据库 前1条
1 付海玲;戊烷—水直接接触相变换热的实验研究与理论分析[D];天津大学;2015年
中国硕士学位论文全文数据库 前3条
1 贺达琪;低温低压下对戊烷产品加氢操作条件的优化研究[D];吉林大学;2016年
2 詹国勇;戊烷低温低压储存新技术及安全性研究[D];华南理工大学;2014年
3 潘旭明;高纯度戊烷系列产品生产工艺开发与优化[D];天津大学;2010年
,本文编号:2073145
本文链接:https://www.wllwen.com/kejilunwen/huaxuehuagong/2073145.html