微生物燃料电池型BOD传感器性能改善关键措施研究
本文选题:双室无介体MFC + BOD传感器 ; 参考:《北京林业大学》2015年硕士论文
【摘要】:生化需氧量(BOD)是表征有机物污染程度的综合性指标。传统的五天生化需氧量(BOD5)为检测BOD浓度的标准方法,但存在有耗时时间长、结果重现性差等缺陷。微生物燃料电池(MFC)型BOD传感器是一种快速检测BOD5的新方法,具有稳定性较强、检测范围广等优势。本文以厌氧段污泥作接种物、质子交换膜作阴阳极室的分隔物构建了双室无介体MFC型BOD传感器,并通过优化阳极材料和阴极电子受体等关键措施,改善MFC型BOD传感器的检测性能。BOD传感器稳定运行后,通过模拟实际废水初步研究了MFC型BOD传感器检测实际废水的可行性,并利用PCR-DGGE技术分析了阳极微生物群落结构。采用硝酸酸化改性石墨毡电极。石墨毡酸化处理4h时,表面接触角变化最大。以硝酸酸化处理的石墨毡为电极材料、溶解氧为阴极电子受体构建MFC型BOD传感器,MFC优化的检测条件为:阴极进水流量为30mL/min;废水中缓冲溶液投加量为50mL/L;L-半胱氨酸投加量为20 mg/L;外接电阻为500Ω。BOD检测范围为2~100mg/L,响应时间小于10 h,数据重现性良好。BOD浓度在2-50 mg/L范围,可利用电流最大值检测废水BOD浓度;BOD浓度在2,~100mg/L范围,可利用电荷量检测废水BOD浓度。以碳刷为电极材料,溶解氧为阴极电子受体构建MFC型BOD传感器,在已优化的检测条件下进行BOD浓度的检测。BOD浓度检测范围为2~100 mg/L,响应时间小于12 h,数据重现性良好。BOD浓度在2-60 mg/L范围,可利用电流峰值检测废水BOD浓度;BOD浓度在2~100mg/L范围时,可利用电荷量检测废水BOD浓度。以硝酸酸化处理的石墨毡为电极材料,H2O2为阴极电子受体构建的BOD传感器的最佳检测条件为:废水中L-半胱氨酸投加量为20 mg/L、缓冲溶液投加量为50mL/L。H2O2浓度为0.5mmol/L时,BOD浓度检测范围为2-200 mg/L;H2O2浓度为1.0 mmol/L时,BOD浓度检测范围为2~300mg/L;H2O2浓度为1.5mmol/L时,BOD浓度检测范围为2~500 mg/L。三种H202浓度条件下,在各自的检测范围内,响应时间均小于4h。通过在阴极液中投加叔丁醇间接证明了H2O2在运行过程中分解生成了·OH,且·OH参与了阴极反应。选择硝酸酸化的石墨毡作为电极材料,H2O2作阴极电子受体以达到快速准确检测的目的。在废水配方中加入面粉作为悬浮可降解有机物代表和废水中的可溶性可降解有机物葡萄糖可被阳极上的微生物菌群作为底物降解,增大了产电电流,延长了响应时间。利用PCR-DGGE技术进行了阳极表面微生物多样性的分析,阳极上富集的微生物菌落由8种产电菌和8种非产电菌组成,两类菌种互营共生。
[Abstract]:Biochemical oxygen demand (bod) is a comprehensive indicator of organic pollution. Traditional five day biochemical oxygen demand (BOD5) is the standard method for detecting bod concentration, but it has some defects such as long time consuming and poor reproducibility. Microbial fuel cell (MFC) bod sensor is a new method for rapid detection of BOD5, which has the advantages of strong stability and wide detection range. In this paper, using anaerobic sludge as inoculum and proton exchange membrane as the separator of cathode and cathode cell, we have constructed a double compartment MFC bod sensor without medium, and optimized anode material and cathode electron receptor. After improving the detection performance of MFC type bod sensor, the feasibility of MFC type bod sensor for detecting actual wastewater was preliminarily studied by simulating the actual wastewater, and the microbial community structure of anode was analyzed by PCR-DGGE. Graphite felt electrode was modified by nitric acid acidizing. The surface contact angle of graphite felt changed greatly when it was acidified for 4 h. Using graphite felt treated by nitric acid as electrode material and dissolved oxygen as cathode electron receptor, the optimal detection conditions of MFC bod sensor are as follows: the flow rate of cathode influent is 30 mL / min, the dosage of buffer solution is 50 mL / L / L, the dosage of cysteine is 20 mg / L; The detection range of external resistance is 500 惟 路bod, the response time is less than 10 h, the data reproducibility is good, the concentration of bod is in the range of 2-50 mg / L, the maximum current can be used to detect the concentration of bod in waste water in the range of 2 ~ 100 mg / L, The concentration of bod in wastewater can be measured by charge quantity. An MFC bod sensor was constructed using carbon brush as electrode material and dissolved oxygen as cathode electron receptor. The detection range of bod concentration is 2 ~ 100 mg / L, the response time is less than 12 h, the data reproducibility is good. The concentration of bod is in the range of 2-60 mg / L, and the peak current can be used to detect the bod concentration of wastewater. When bod concentration is in the range of 2 ~ 100 mg / L, bod concentration can be measured by charge quantity. The best detection conditions of bod sensor with graphite felt treated by nitric acid as electrode material and H _ 2O _ 2 as cathode electron receptor are as follows: the dosage of L-cysteine in wastewater is 20 mg / L, the dosage of buffer solution is 50 mL / L and the concentration of H _ 2O _ 2 is 0.5 mmol 路L ~ (-1). When the concentration of H _ 2O _ 2 was 1.0 mmol / L, the detection range of bod was 2 ~ 300 mg / L ~ (-1) mg 路L ~ (-1) H _ 2O _ 2 was 1.5 mmol / L ~ (-1) mg 路L ~ (-1) 路L ~ (-1) H _ 2O _ 2 was 2 500 mg 路L ~ (-1) 路L ~ (-1) 路L ~ (-1) of H _ 2O _ 2. The response time was less than 4 h in each detection range under three H202 concentrations. By adding tert-butanol to the cathode solution, it was proved indirectly that H _ 2O _ 2 was decomposed into OH and OH was involved in the cathodic reaction. Hydrogen peroxide (H _ 2O _ 2) was used as cathode electron receptor for rapid and accurate detection of nitrate-acidified graphite felt. Adding flour as the representative of suspended degradable organic matter and soluble degradable organic glucose in wastewater as substrate can be degraded by microbial flora on the anode, which increases the electric current and prolongs the response time. The microbial diversity on the anode surface was analyzed by PCR-DGGE technique. The enriched microorganism colonies on the anode were composed of 8 electro producing bacteria and 8 non electro producing bacteria, and the two species were symbiotic with each other.
【学位授予单位】:北京林业大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TM911.4;TP212
【参考文献】
相关期刊论文 前10条
1 孙世昌;张盼月;孙德智;肖凌鹏;马欣;;无介体微生物燃料电池型BOD传感器研究进展[J];安全与环境学报;2010年05期
2 王云英;孟江燕;陈学斌;白杨;;复合材料用碳纤维的表面处理[J];表面技术;2007年03期
3 次素琴;吴娜;温珍海;李景虹;;微生物燃料电池电极材料研究进展[J];电化学;2012年03期
4 赵欣,甘海明,甘霖;水环境中有机污染物生化需氧量的测定[J];分析科学学报;2003年04期
5 张金娜;赵庆良;尤世界;张国栋;;生物阴极微生物燃料电池不同阴极材料产电特性[J];高等学校化学学报;2010年01期
6 曹金鹏;陈昌国;;微生物燃料电池负极及其改性研究进展[J];电源技术;2014年10期
7 张金娜;赵庆良;袁一星;尤世界;张国栋;孙靖霄;;微生物燃料电池测定生活污水BOD方法[J];哈尔滨工业大学学报;2010年11期
8 赵雷;马军;孙志忠;刘正乾;杨忆新;路炜;;蜂窝陶瓷催化臭氧化降解水中痕量硝基苯的机理研究[J];环境科学;2007年02期
9 吴锋;刘志;周顺桂;王跃强;黄赛花;;低成本单室微生物燃料电池型BOD传感器的研制[J];环境科学;2009年10期
10 贾斌;李小明;刘志华;杨麒;廖德祥;曾光明;邹高龙;胡劲梅;刘精今;;双室和单室微生物燃料电池的研究及比较[J];环境污染与防治;2008年05期
相关博士学位论文 前4条
1 曹效鑫;微生物燃料电池中产电菌与电极的作用机制及其应用[D];清华大学;2009年
2 孙丹;定向优选阳极微生物促进生物电化学系统效能的研究[D];哈尔滨工业大学;2013年
3 殷瑶;双室无介体微生物燃料电池产电及性能优化基础研究[D];华东理工大学;2013年
4 张吉强;微生物燃料电池同步脱氮产电性能及机理研究[D];浙江大学;2014年
相关硕士学位论文 前8条
1 李建海;海底沉积物微生物燃料电池阳极表面改性及电极构型研究[D];中国海洋大学;2010年
2 付宁;无介体微生物燃料电池处理模拟有机废水及其影响因素研究[D];大连理工大学;2006年
3 吴晶;利用微生物燃料电池技术处理有机废水的效能研究[D];浙江大学;2006年
4 李毅;微生物燃料电池在废水处理中的应用研究[D];北京化工大学;2008年
5 张翼峰;不同底物的微生物燃料电池阳极菌群及其产电特性分析[D];大连理工大学;2008年
6 陈立香;基于废水处理的微生物燃料电池的研制及基础研究[D];汕头大学;2010年
7 郑聪聪;微生物燃料电池阳极材料及其性能研究[D];青岛科技大学;2012年
8 田帅;微生物燃料电池型BOD传感器研究[D];北京林业大学;2013年
,本文编号:2073361
本文链接:https://www.wllwen.com/kejilunwen/huaxuehuagong/2073361.html