掺煤矸石混凝土力学及收缩性能研究
本文选题:煤矸石 + 流动性 ; 参考:《沈阳建筑大学》2015年硕士论文
【摘要】:煤矸石是煤矿生产过程中采煤、洗煤时排放的工业废渣。目前我国煤矸石累计堆存量已达50多亿吨,占用了大量的土地,同时,煤矸石自然过程中不断排放有害气体,严重污染环境。而利用煤矸石生产混凝土制品,替代混凝土中部分碎石,可以大量减少建筑行业对天然集料的的使用,具有较高的经济效益和社会效益。本课题以煤矸石作为粗集料,替代部分碎石制备掺煤矸石混凝土,系统研究煤矸石掺量、粉煤灰取代率、水胶比、减水剂掺量等因素对掺煤矸石混凝土流动性、力学性能和收缩性能的影响规律。研究结果表明:随着煤矸石掺量的增加,混凝土流动性和力学性能明显下降。混凝土收缩是先增大后减小;随着粉煤灰掺量的增加,混凝土的流动性、力学性能和收缩性能均得到了明显的改善。而粉煤灰对力学性能和收缩性能的影响主要发生在后期;随着水胶比的增大,混凝土的流动性增加,力学性能下降,而水胶比越小,混凝土的收缩越大;随着减水剂掺量的增加,混凝土的流动性和力学性能逐渐增加,而大掺量减水剂对混凝土的早期收缩有有很好的抑制作用,但是对后期收缩影响不利,故减水剂的掺量要控制在合理范围之内;运用正交分析和线性回归分析,得出混凝土力学性能的最佳配合比为粉煤灰掺量为20%、水胶比为0.38、煤矸石掺量为30%,其中水胶比是影响混凝土强度的主要因素,煤矸石掺量次之,粉煤灰取代率影响最小,线性回归方程为Y=99.65889+0.01728X1-124.25X2-0.01897X3。混凝土收缩性能的最佳配合比为粉煤灰掺量为35%、水胶比为0.44、煤矸石掺量为55%、减水剂掺量为1.5%,其中水胶比是影响混凝土收缩应变的主要因素,粉煤灰取代率次之,煤矸石掺量第三,减水剂掺量影响小,线性回归方程为Y=738.20178-0.29528X1-1067.95X2+0.000978X3-0.18912X4。
[Abstract]:Coal gangue is the industrial residue discharged during coal mining and coal washing. At present, the accumulative storage of coal gangue in our country has reached more than 5 billion tons, occupying a large amount of land. At the same time, the natural process of coal gangue constantly releases harmful gas, which seriously pollutes the environment. The use of coal gangue to produce concrete products instead of some crushed stones in concrete can greatly reduce the use of natural aggregates in the construction industry and has higher economic and social benefits. In this paper, coal gangue is used as coarse aggregate instead of some crushed stone to prepare coal gangue concrete. The fluidity of coal gangue concrete is studied systematically, such as coal gangue content, fly ash substitution rate, water binder ratio and water reducing agent ratio, etc. The influence of mechanical properties and shrinkage properties. The results show that the fluidity and mechanical properties of concrete decrease obviously with the increase of coal gangue content. The shrinkage of concrete increases first and then decreases, and with the increase of fly ash content, the fluidity, mechanical properties and shrinkage properties of concrete are obviously improved. The effect of fly ash on the mechanical properties and shrinkage of concrete mainly occurs in the later stage, with the increase of water-binder ratio, the fluidity of concrete increases, the mechanical property decreases, and the smaller the water-binder ratio, the greater the shrinkage of concrete. With the increase of water reducing agent content, the fluidity and mechanical properties of concrete increase gradually. However, the large amount of water reducing agent has a good effect on the early shrinkage of concrete, but it is unfavorable to the late shrinkage. Therefore, the dosage of water reducer should be controlled within a reasonable range, and the orthogonal analysis and linear regression analysis should be used. It is concluded that the optimum mix ratio of concrete mechanical properties is fly ash 20, water binder 0.38, coal gangue 30. The water binder ratio is the main factor affecting the strength of concrete, the coal gangue content is the second, and the fly ash replacement ratio is the least. The linear regression equation is YT 99.65889 0.01728X1-124.25X2-0.01897X3. The optimum mixture ratio of concrete shrinkage performance is 35% fly ash, 0.44 water / binder ratio, 55 coal gangue content and 1.5 water reducing agent. The water binder ratio is the main factor affecting shrinkage strain of concrete, followed by the replacement rate of fly ash. The content of coal gangue was the third, and the content of water reducer had little influence. The linear regression equation was YC 738.20178-0.29528X1-1067.95X2 0.000978X3-0.18912X4.
【学位授予单位】:沈阳建筑大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TU528
【相似文献】
相关期刊论文 前10条
1 薛纪莹 ,郑志荣 ,胡芸 ,赵莹;仿毛化纤收缩性能与加工关系的探讨[J];毛纺科技;1991年05期
2 李素杰;胡文侠;秦言华;陈润英;;两种仿毛涤纶纤维的热收缩性能、力学性能探讨[J];天津纺织工学院学报;1991年01期
3 F.Wachv,陈水林;针织品的染整[J];国际纺织导报;2001年03期
4 汤克勇,刘京龙,刘捷;皮革耐干热收缩性能影响因素的研究[J];陕西科技大学学报;2004年03期
5 梁娜;张晓燕;孙丽;李凤兰;;石粉替代水泥掺量对砌筑砂浆收缩性能的影响[J];混凝土;2011年08期
6 李刚;;利用粉煤灰改善混凝土,砂浆收缩性能试验研究[J];包头钢铁学院学报;1988年02期
7 汪潇;王宇斌;杨留栓;朱新锋;;高性能粉煤灰混凝土工作性能与收缩性能研究[J];河南城建学院学报;2012年05期
8 胡明玉;彭金生;邹循华;;湿排粉煤灰墙体材料收缩性能的试验研究[J];粉煤灰;2008年02期
9 陈峰;;在老混凝土约束下的修补混凝土收缩性能试验研究[J];武汉理工大学学报;2011年09期
10 程云虹;黄菲;李亚洲;;废弃陶瓷骨料混凝土收缩性能试验研究[J];公路;2013年08期
相关会议论文 前6条
1 吴学礼;康明;张树青;;矿粉混凝土的自收缩性能[A];中国硅酸盐学会2003年学术年会论文摘要集[C];2003年
2 钟文慧;姚武;;不同种类纤维对混凝土收缩性能的影响[A];先进纤维混凝土 试验·理论·实践——第十届全国纤维混凝土学术会议论文集[C];2004年
3 王晴;刘磊;陈彦文;刘军;;自释放水源高强轻集料混凝土收缩性能的研究[A];全国高强与高性能混凝土及其应用专题研讨会论文集[C];2005年
4 康明;朱洪波;王培铭;;矿渣粉与粉煤灰对水泥收缩性能影响的实验研究[A];2007中国钢铁年会论文集[C];2007年
5 汤克勇;张博恩;;热历史对牛皮胶原纤维干热收缩性能的影响[A];2007年全国高分子学术论文报告会论文摘要集(下册)[C];2007年
6 刘文涛;田兴友;郑瑾;崔平;朱诚身;;PET/Silica复合材料纤维的热收缩性能研究[A];2005年全国高分子学术论文报告会论文摘要集[C];2005年
相关硕士学位论文 前2条
1 赵振清;掺煤矸石混凝土力学及收缩性能研究[D];沈阳建筑大学;2015年
2 陈波华;新型建筑材料“凝石”性能研究[D];天津大学;2007年
,本文编号:2080167
本文链接:https://www.wllwen.com/kejilunwen/huaxuehuagong/2080167.html