不同离子浓度条件下典型有机物对不同超滤膜的吸附特性研究
[Abstract]:In recent years, ultrafiltration technology has been widely used in the field of water treatment. However, the UF membrane is easy to pollute and its cost is high, so it is restricted greatly in the process of popularization. In this paper, the properties and microstructure of three kinds of self-made ultrafiltration membranes are discussed, and then the contamination of bovine serum protein (BSA) to three kinds of membrane materials (PVDF, PES and EVOH) under different kinds of ions (Na ~ (2 +) and ion concentration is discussed. The mechanism of membrane fouling was discussed by means of quartz crystal microbalance (QCM-D). The results showed that: (1) the hydrophilicity of the three membrane materials was EVOHPESPVDF.The hydrophobicity of the three membranes was related to the fouling ability of the membrane. When the hydrophilic membrane was hydrophilic, the hydrophobic membrane was not easy to be contaminated, so the serious pollution degree of the three membranes was EVOHPESPVDF. For PVDF and EVOH membranes with larger membrane pores, because the BSA molecule is a uniform ellipsoid structure, it is not easy for the molecules to intersect with each other, and it is easier for a single molecule to enter into the membrane pore through the membrane surface and the BSA molecule is easily lost. Therefore, the BSA retention rate of these two membranes is lower than that of PES. Therefore, PES membrane has the strongest retention ability to BSA. The highest amount of BSA adsorption was PVDF membrane, followed by PES membrane EVOH membrane under the condition of ion-free coexistence. (2) the BSA retention rate of the three membranes under Na ion coexistence condition. On the whole, the PES membrane had the highest rejection rate and the lowest EOVH membrane was PVDF membrane. The same ultrafiltration membrane material showed the same rule that the higher the concentration of Na ion, the lower the rejection rate of BSA. For PVDF membrane and EVOH membrane, when Na ion concentration was 100 mmol / L, BSAs could hardly be intercepted. This may be due to the water binding between bovine serum protein molecules and the membrane surface, which makes it difficult for the bovine serum protein molecules to aggregate with each other, and its molecular weight is small, which makes it easy to penetrate the membrane pore and reduce the rejection rate. The flux recovery rate decreases with the increase of ion concentration, increases to a certain extent, and increases to a certain extent. When the concentration of Na ion is 0 mmol / L ~ (-1) mol / L ~ (10) mmol / L ~ (10) mmol / L ~ (-1), the three kinds of ultrafiltration membranes are in the initial stage of fouling process in the process of adsorption of BSA. The adsorption rate is very fast and the rigid adsorption layer is formed. After a certain time the adsorption layer begins to show viscoelasticity and the adsorption amount does not increase and the adsorption process reaches the adsorption equilibrium. When the ion concentration increases, the adsorption capacity increases, but when the ion concentration increases to a certain extent and the hydration force becomes the dominant force, the adsorption capacity begins to decrease because of the increase of the hydration repulsion force. (3) when the Ca 2 + coexists, the adsorption capacity begins to decrease. In the experiments of membrane flux attenuation and membrane flux recovery, the adsorption behavior of BSA on three kinds of ultrafiltration membranes was studied, and the pollution law was found to be similar to that of Na ions. The higher the concentration of Ca 2 +, the lower the rejection rate of BSA. For PVDF and EVOH membranes, when Ca 2 + concentration is 100 mmol / L, BSAs can hardly be intercepted. The flux recovery rate shows that with the increase of ion concentration, ion concentration increases to a certain extent, the flux recovery rate increases, and the adsorption behavior is similar to that when Na ion coexists. Because the bivalent Ca2 + and monovalent Na are cations, the electrostatic shielding effect is formed with the negative BSA, and the electrostatic repulsive force decreases and the membrane fouling is aggravated. Because of the complexation of the bivalent Ca 2 +, the effect of Ca 2 + on the flux attenuation of the membrane is slightly greater than that of Na ion.
【学位授予单位】:西安建筑科技大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:X703;TQ028.8
【相似文献】
相关期刊论文 前10条
1 陈励权,辛文达,董长发,王齐祖,马忠乾;加压离子交换螯合排代法分离稀土元素时排代离子作用的研究——(Ⅱ)平衡区段两相组成与排代离子浓度的关系[J];稀土;1984年02期
2 郑锦其,李少强,陈铭俊,陈勇,王学勤;福州厦门两市空气中离子浓度的测定[J];海峡预防医学杂志;1998年04期
3 张旭霞;溶液中的离子浓度问题[J];通化师范学院学报;2004年05期
4 袁兆岭,陈继诚;混酸溶液中有关离子浓度计算的简便公式[J];绍兴文理学院学报(自然科学版);2002年09期
5 王凌云;桂卫华;刘梅花;阳春华;;基于改进在线支持向量回归的离子浓度预测模型[J];控制与决策;2009年04期
6 袁兆岭;陈继诚;;混酸溶液中有关离子浓度计算的简便公式[J];绍兴文理学院学报(自然科学版);2002年03期
7 田嘉兴;铁离子浓度与循环水质量有关问题的探讨[J];吉化科技;1995年02期
8 冯秀范,田子俊;容量法测定铁离子浓度的一种方法[J];洛阳工学院学报;1995年03期
9 邹金慧;离子浓度检测仪的设计研究[J];云南工业大学学报;1998年02期
10 杜首英,陆晓霞;离子浓度在线微机检测系统[J];化工自动化及仪表;1997年06期
相关会议论文 前10条
1 牛中奇;阎静;卢智远;邵旺田;杨芳;;毫米波对细胞膜表面电荷和细胞内外离子浓度的影响[A];21世纪医学工程学术研讨会论文摘要汇编[C];2001年
2 孙辉;徐宁;;金冶炼工艺中过程离子浓度在线检测技术分析[A];2011中国有色金属行业仪表自动化学术会议论文集[C];2011年
3 李勇刚;李浩;阳春华;王莎;;基于NIWVP-PSO的沉铁过程铁离子浓度软测量[A];中国自动化学会控制理论专业委员会D卷[C];2011年
4 罗汀;郭义;郭永明;;家兔腧穴处离子浓度分布特异性的微透析在体研究[A];第九届全国钙信号和细胞功能研讨会论文摘要集[C];2012年
5 晏芳;邓少平;;脂质体稳定性的离子浓度区间实验研究[A];中国食品科学技术学会第五届年会暨第四届东西方食品业高层论坛论文摘要集[C];2007年
6 李顺光;陈树彬;温磊;胡丽丽;王标;;钕离子浓度对受激发射截面的影响[A];第七届全国激光科学技术青年学术交流会专辑[C];2003年
7 吴学礼;刘静;王定远;孟华;张建华;;基于LabVIEW和研华PCI-1710L的离子浓度检测系统[A];2007'仪表,自动化及先进集成技术大会论文集(二)[C];2007年
8 伍林;曹淑超;易德莲;秦晓蓉;欧阳兆辉;王艳;连兰;;冷却液中亚硝酸根和钼酸根离子浓度测试盒的研究[A];中国精细化工协会第一届水处理化学品行业年会论文集[C];2005年
9 李芹;郭庆;胡鸿志;;基于微控制器的智能微量离子浓度分析仪[A];2009全国虚拟仪器大会论文集(二)[C];2009年
10 胡晓波;;酸雨侵蚀混凝土的试验模拟分析[A];《硅酸盐学报》创刊50周年暨中国硅酸盐学会2007年学术年会论文摘要集[C];2007年
相关重要报纸文章 前1条
1 本报记者 覃泽文;美研究人员发明“电鳗”电池[N];中国能源报;2009年
相关博士学位论文 前1条
1 朱红求;锌冶炼除钴过程建模与智能优化方法研究及应用[D];中南大学;2010年
,本文编号:2138077
本文链接:https://www.wllwen.com/kejilunwen/huaxuehuagong/2138077.html