当前位置:主页 > 科技论文 > 化学工程论文 >

锂—氧气电池高效率催化剂的设计与性能研究

发布时间:2018-07-29 10:40
【摘要】:锂-氧气电池(或锂-空气电池)由于具有超高的理论比容量而获得全世界众多研究者的广泛关注,被认为是极具发展潜力的下一代储能体系之一。在过去十年中,科研人员对有机体系锂-氧气电池的相关基本理论进行了深入研究并取得了一定成果。但是,要真正实现该电池体系的应用化,还需要解决很多棘手的关键技术问题。其中最大的难题就是,由于不溶性放电产物过氧化锂自身的低电子电导率和ORR/OER反应中过于缓慢的动力学造成的充放电过程中过电压较大,尤其是充电过程。这不仅会直接降低电池的能量转换效率,还会促进电解液在高电位下严重分解,从而削减电池的循环寿命。目前,研究人员主要通过开发各种正极催化剂来减小充放电的极化作用,降低充放电过电压,从而提高电池的能量转换效率和循环稳定性。但迄今为止,开发具有高效率且长循环性能的催化剂仍然是科研界面临的主要任务。因此,对催化剂类型和结构进行最优化的设计,获得具有高能量转换效率和优异循环稳定性能的锂-氧气电池体系,是当前很值得深入研究的课题,具有重要的实际意义。本论文从当前锂-氧气电池固体催化材料面临的关键问题出发,提出了利用可溶解的添加剂来催化分解固体放电产物的实验设计思路来大幅提高锂-氧气电池的能量转换效率、可逆性能和循环稳定性能。在此基础上,分别构筑并研究了具有三明治式结构的Fe2O3/石墨烯复合双功能催化剂和自支撑结构的泡沫镍负载Ru(即Ru@UNF)催化剂用作锂-氧气电池正极的电化学性能,取得了以下成果:1、高效可溶性催化剂N-甲基吩噻嗪(MPT)的研究:在最初研究阶段,我们系统总结了氧化还原介质型添加剂作为锂-氧气电池可溶性催化剂的基本条件,并初步筛选了若干氧化电位小于4.0 V的氧化还原穿梭添加剂。通过对MPT的物理特性和电化学性能进行实验研究,发现MPT具有合适的氧化电位,较大的分子扩散系数,是一种潜在的锂-氧气电池可溶性催化剂。后来,深入研究了 MPT的添加对锂-氧气电池充放电的影响。实验表明,MPT的加入虽然没有改变放电电压平台,却明显降低了充电过电位(0.67V),从而提高了相应电池的能量转换效率(75.7%)。借助一系列非原位表征技术(如SEM、XRD等)和原位DEMS技术来研究MPT在锂-氧气电池充放电过程中的作用机制。结果表明,添加MPT的电池在充放电过程中实现了 Li2O2的可逆形成与分解,其中MPT在充电过程中对 Li2O2 的催化作用机理为:(1)2MPT = 2MPT++2e-;(2)2MPT + Li2O2=2MPT + 2Li+ + 02↑。此外,还发现MPT的使用大大改善了电池的循环稳定性能,抑制了高电位下碳和电解液的不稳定副反应。在此,我们还深入讨论了影响MPT循环催化利用效率的因素,总结出提高此类可溶性催化剂循环效率的方法途径。最后,尝试设计出具有高能量效率和优异循环稳定性的锂-氧气电池体系。2、高效可溶性催化剂LiI的研究:深入研究了可溶性LiI的添加对锂-氧气电池充放电过程的影响。研究表明,LiI的使用明显降低了锂-氧气电池充电电位至3.5 V左右,从而提高电池的能量转换效率至74.3%,这一值远远高于未添加LiI的相应电池效率(59.7%)。采用非原位SEM和XPS表征技术发现,含LiI的锂-氧气电池表现出良好的Li2O2可逆形成与分解特性。而且将电化学石英微天平技术与循环伏安测试结合定量检测含LiI的锂-氧气电池在充放电过程中电极表面纳克级质量的变化,以此来探究LiI的催化作用机理,如下:放电时,LiI不影响Li2O2的生成;充电时,I-离子优先在电极表面失去电子被氧化为I3-(3.2V左右),然后I3-继续被氧化为I2(3.5V左右),并扩散至固体放电产物Li2O2表面,在固-液界面处通过化学反应(12 + Li2O2 = 2Li+ + 21-+O2↑)氧化分解Li2O2,释放氧气并再次生成其还原态I-。此外,LiI的使用明显改善了电池的循环稳定性能。3、三明治式结构Fe2O3/石墨烯复合正极催化剂:采用简单的热铸法成功设计并制备了多层、三明治式结构的Fe2O3/GNS复合材料,并将其用作锂-氧气电池正极催化剂。结果表明,与纯的GNS相比,Fe2O3/GNS的充电过电位明显得到改善,且具有良好的可逆性、能量效率、库伦效率和循环稳定性能。我们也尝试将可溶性催化剂MPT加入电池体系,测试后发现电池充电电压降至3.7 V左右,且具有优异的循环稳定性。通过一系列非原位和原位的表征,发现以Fe2O3/GNS复合材料用作正极催化剂时,锂-氧气电池放电产物主要是环状固体Li202,且再次充电时Li2O2被氧化分解。利用DEMS技术研究了以Fe2O3/GNS为正极的锂-氧气电池在充电过程的反应机理。我们认为,电池表现出如此好的性能主要归因于双功能催化剂的独特三明治结构,该结构不仅提供了较多的催化活性位点,更重要的是,能够有效减少碳基底与Li2O2的接触反应,从而抑制副产物Li2C03的生成,提高电池循环性能。4、自支撑结构的无碳正极催化剂Ru@UNF:采用Cu模板法制备出超轻泡沫镍(UNF)基底,后用电沉积法制备得到三维自支撑结构的无碳正极Ru@UNF催化剂。该材料具有多孔结构,且在Ru优异的ORR和OER催化性能作用下,催化剂表现出优异的电化学性能。在电流密度密度为150mAg-1下,以Ru@UNF为正极的锂-氧气电池首圈可逆比容量达到2410 mAh g-1,且放电电压在2.66 V左右,充电平台在3.56V,相应能量转换效率为74.7%。同时,还具有良好的循环稳定性能(可循环100圈以上)。通过原位DEMS研究了以Ru@UNF为正极的锂-氧气电池在充电过程中的反应机理。电池具有如此优异的性能应该归因于两点:(1)Ru的优异催化性能,降低充放电过电位,提高能量效率;(2)无碳正极材料的使用能够避免碳腐蚀引起的副反应,大大提升了电池的循环性能。以上结果为解决有机体系锂-氧气电池面临的充放电过电位大、能量转换效率低和循环稳定性差等问题指出了 一条全新的突破思路和方向,对于发展高性能、可实用化的锂-氧气电池具有重要意义。
[Abstract]:Lithium oxygen battery (or lithium air battery) has received extensive attention from many researchers all over the world because of its high theoretical specific capacity. It is considered to be one of the next generation energy storage systems with great potential. In the past ten years, researchers have studied and obtained the basic theory of lithium oxygen battery in organic system. However, in order to realize the application of the battery system, there are many key technical problems to be solved. The biggest problem is that the overvoltage in the charge and discharge process caused by the low electron conductivity of the insoluble discharge product and the slow dynamics of the ORR/OER reaction is larger, especially in the process of charge discharge. It is a charging process. This will not only directly reduce the energy conversion efficiency of the battery, but also promote the serious decomposition of the electrolyte at high potential, thus reducing the cycle life of the battery. At present, the researchers mainly develop a variety of positive catalysts to reduce the polarization effect of charge and discharge, lower the charge and discharge overvoltage, and thus improve the energy conversion of the battery. But so far, the development of catalysts with high efficiency and long cycle performance is still the main task in the scientific research community. Therefore, the optimal design of the type and structure of the catalyst to obtain a lithium oxygen battery system with high energy conversion efficiency and excellent cyclic stability is currently worth it. The subject of in-depth study is of great practical significance. In this paper, starting from the key problems facing the current solid catalytic materials for lithium oxygen batteries, the experimental design idea of using soluble additives to catalyze the decomposition of solid discharge products is proposed to greatly improve the energy conversion efficiency of the lithium oxygen battery, the reversible performance and the cycle stability. On this basis, the electrochemical performance of Fe2O3/ graphene composite double functional catalyst with sandwich structure and self supporting structure of nickel foam Ru (Ru@UNF) catalyst used as the cathode of lithium oxygen battery was constructed and studied respectively. The following achievements were obtained: 1, the research of the high efficiency soluble catalyst N- methyl phenothiazine (MPT) In the initial stage, we systematically summarized the basic conditions of the oxidation-reduction medium additive as the soluble catalyst for the lithium oxygen battery, and preliminarily screened some oxidation-reduction shuttle additives with the oxidation potential less than 4 V. Through the experimental study of the physical and electrochemical properties of MPT, it was found that MPT was suitable. The oxidation potential, the larger molecular diffusion coefficient, is a potential lithium oxygen battery soluble catalyst. Later, the effect of the addition of MPT on the charge and discharge of lithium oxygen batteries was deeply studied. The experiment shows that, although the addition of MPT does not change the discharge voltage platform, the charge overpotential (0.67V) is obviously reduced, thus the corresponding battery is improved. The energy conversion efficiency (75.7%). Using a series of non in-situ characterization techniques (such as SEM, XRD etc.) and in situ DEMS technology, the mechanism of MPT in the charge and discharge process of lithium oxygen battery is studied. The results show that the Li2O2 is reversible and decomposed in charge and discharge process, and MPT is charged to Li2O2 during the charging process. The mechanism of the action is: (1) 2MPT = 2MPT++2e-; (2) 2MPT + Li2O2=2MPT + 2Li+ + 02. Furthermore, it is found that the use of MPT greatly improves the cycle stability of the battery and inhibits the unstable side reaction of carbon and electrolyte at high potential. Here, we also discuss the factors affecting the utilization efficiency of the MPT cycle, and summarize the improvement of this kind. In the end, an attempt was made to design a lithium oxygen battery system.2 with high energy efficiency and excellent cycling stability, and a study of the high efficiency soluble catalyst LiI. The effect of the addition of soluble LiI on the charge and discharge process of lithium oxygen batteries was investigated. The study showed that the use of LiI was significantly reduced. The charge potential of lithium oxygen battery is about 3.5 V, thus increasing the energy conversion efficiency of the battery to 74.3%. This value is far higher than that of the corresponding battery efficiency (59.7%) without the addition of LiI. The non in situ SEM and XPS characterization techniques showed that the LiI containing lithium oxygen battery showed good Li2O2 reversible formation and decomposition characteristics. Moreover, the electrochemical quartz was Microsoft. Balance technique and cyclic voltammetry test combine the quantitative detection of the changes in the quality of the electrode surface of the lithium oxygen battery containing LiI in the process of charging and discharging, in order to explore the catalytic mechanism of LiI, as follows: when the discharge is discharged, the LiI does not affect the formation of the Li2O2; when the charge is charged, the I- ion loses electrons on the electrode surface to be oxidized to I3- (3.2V), Then I3- continues to be oxidized to I2 (3.5V), and diffuses to the surface of the solid discharge product Li2O2, and spreads to the surface of the solid discharge product Li2O2. The chemical reaction (12 + Li2O2 = 2Li+ + 21-+O2) is used to oxidize Li2O2, release oxygen and regenerate its reductive I-.. The use of LiI has obviously improved the cycle stability of the battery, and the sandwich structure Fe2O3. / graphene composite positive catalyst: a simple heat casting method was used to successfully design and prepare multi-layer, sandwich structure Fe2O3/GNS composites and use it as a lithium oxygen battery positive catalyst. The results show that the overpotential of Fe2O3/GNS is obviously improved compared with pure GNS, and has good reversibility, energy efficiency and library. We also try to add the soluble catalyst MPT to the battery system. After testing, it is found that the charge voltage of the battery is reduced to about 3.7 V and has excellent cyclic stability. By a series of non in situ and in situ characterization, the lithium oxygen battery discharge production is found when Fe2O3/GNS composite is used as a positive catalyst. The main object is a circular solid Li202, and the Li2O2 is decomposed when recharged. The reaction mechanism of the lithium oxygen battery with Fe2O3/GNS as the positive electrode is studied by DEMS technology. We think that the performance of the battery is mainly attributable to the single special sandwich structure of the dual function catalyst, which not only provides much more. The catalytic active sites, more importantly, can effectively reduce the contact reaction between the carbon base and Li2O2, thus inhibit the formation of the Li2C03 and improve the battery cycle performance.4. The carbon free catalyst Ru@UNF: of the self supporting structure is prepared by Cu template method to prepare the base of the super light foam nickel (UNF), and then the three-dimensional self support is prepared by electrodeposition. The structure has a carbon free positive Ru@UNF catalyst. The material has a porous structure, and the catalyst exhibits excellent electrochemical performance under the excellent catalytic performance of ORR and OER. Under the current density density of 150mAg-1, the reversible specific volume of the first coil of the lithium oxygen battery with Ru@UNF as the positive pole reaches 2410 mAh g-1, and the discharge voltage is about 2.66 V. The charging platform at 3.56V, with the corresponding energy conversion efficiency of 74.7%., also has good cyclic stability (100 cycles or more). Through in situ DEMS, the reaction mechanism of the lithium oxygen battery with Ru@UNF as the positive electrode is studied. The excellent performance of the battery should be attributed to two points: (1) the excellent catalytic performance of Ru. To reduce the overcharge and discharge overpotential and improve the energy efficiency, (2) the use of carbon free cathode materials can avoid the secondary reaction caused by carbon corrosion and greatly improve the cycle performance of the battery. The above results have pointed out a problem that the charge discharge overpotential, the low energy transfer efficiency and the poor circulation stability are pointed out in the organic system of lithium oxygen batteries. The new breakthrough ideas and directions are of great significance for the development of high-performance, practical lithium oxygen batteries.
【学位授予单位】:南京大学
【学位级别】:博士
【学位授予年份】:2017
【分类号】:TM911.41;O643.36

【相似文献】

相关期刊论文 前10条

1 姚宏禄;主养鲢鳙非鲫高产池塘的能量转换效率[J];农村生态环境;1990年03期

2 王育锋;彭秀真;周嗣泉;秦兆美;宫修清;;南四湖生态能量转换效率研究报告[J];海洋湖沼通报;1990年04期

3 梅成瑞;绿洲农田土地系统能量转换效率与调控研究──以宁夏平原绿洲为例[J];干旱区资源与环境;1995年04期

4 张振华,严少华,常志州;沿海框围养鱼生态系统能量转换效率的分析[J];农村生态环境;1994年03期

5 刘永健;王志伟;何畅;冯霄;李安学;;煤制天然气的能源网络分析图[J];化工进展;2013年09期

6 赵叔f^;掺杂三氧化二铁多晶压片电极的光电化学特性[J];中国科学技术大学学报;1987年01期

7 ;德“n型”单晶硅太阳能电池效率达到23.4%[J];网印工业;2009年10期

8 陈汉;毕恩兵;韩礼元;;染料敏化太阳能电池敏化剂材料研究进展[J];中国材料进展;2013年07期

9 王超磊;王泽清;马廷丽;;具有推拉电子结构卟啉染料的合成及其在染料敏化太阳能电池中的应用[J];应用化学;2013年07期

10 王钢;谭海军;刘波;陈旭珠;张怡平;吴莹莹;潘春跃;;含异靛单元染料的合成及在DSSC中的研究[J];广州化工;2012年14期

相关会议论文 前2条

1 吴宏滨;;通往能量转换效率达10%的单结高分子太阳电池:界面工程,器件结构和光学工程的综合优化[A];2013年全国高分子学术论文报告会论文摘要集——主题G:光电功能高分子[C];2013年

2 吴宏滨;何志才;曹镛;;能量转换效率达10%的单结聚合物太阳电池[A];中国化学会第29届学术年会摘要集——第25分会:有机光伏[C];2014年

相关重要报纸文章 前1条

1 刘娟 晏子 汪晓霞;一年再造一个“新飞达”[N];新华日报;2006年

相关博士学位论文 前4条

1 詹卫伸;染料敏化太阳能电池有机光敏分子的理论研究[D];大连理工大学;2010年

2 廖飞勇;长期低浓度SO_2对油桐光合能量转换效率及机理的影响[D];中南林学院;2002年

3 裴佳宁;聚合物体异质结太阳能电池的器件优化及光伏性能研究[D];吉林大学;2011年

4 张伟;聚合物P3HT和PFDTBT与富勒烯共混光伏体系的电荷产生动力学[D];哈尔滨工业大学;2013年

相关硕士学位论文 前10条

1 张建钊;染料敏化太阳能电池中高性能D-π-A型芳胺类有机染料的理论设计和表征[D];东北师范大学;2015年

2 韩长峰;阴极修饰提高聚合物太阳能电池性能的研究[D];河南大学;2015年

3 赵文超;高效聚合物太阳能电池界面工程和形貌研究[D];中国海洋大学;2015年

4 周淼;新型有机聚合物太阳能电池的结构设计及性能优化[D];太原理工大学;2016年

5 涂启胜;含二茚并咔唑的共聚物的设计、合成、表征及其在太阳能电池中的应用[D];福建师范大学;2016年

6 邢靖楠;矩形纳米管道内的电动能量转换效率[D];内蒙古大学;2017年

7 王泽清;新型卟啉染料的设计与合成及其在染料敏化太阳能电池中的应用[D];大连理工大学;2012年

8 邓利军;含D-A卟啉的聚合物和三苯胺类有机染料的合成及光伏性能研究[D];湘潭大学;2012年

9 柴老大;聚合物太阳能光伏电池器件制备技术研究[D];河北大学;2010年

10 张敏;基于苯并二噻吩和吡咯并吡咯二酮的共聚物光伏材料的合成及性能研究[D];湘潭大学;2014年



本文编号:2152420

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/huaxuehuagong/2152420.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户103d7***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com