当前位置:主页 > 科技论文 > 化学工程论文 >

螺旋盘管反应器强化液-液混合及应用研究

发布时间:2018-07-29 13:50
【摘要】:混合过程在化学工业中具有重要地位,涉及均相混合与非均相混合过程。反应器的混合性能对产物分布、产品质量等有重要影响,是化工过程强化研究中的重要课题。螺旋盘管反应器(英文Helical Tube Reactor,简称HTR)作为一种典型的被动式混合设备,具有结构紧凑、耐压、轴向返混少、体系温度易控制等优点,已应用于硝化反应、氧化反应、卤化反应、结晶、乳液聚合、生物柴油制备、萃取、纳米材料制备等过程。上述应用研究中涉及快速复杂反应过程和液-液非均相混合过程。然而对上述两类过程起到至关重要作用的HTR微观混合和液-液分散性能的基础研究却相对薄弱。本论文首先针对快速复杂反应过程,鉴于预混性能对反应过程具有重要影响,设计了预混式HTR,通过CFD模拟及实验研究的方法对预混组件进行类型优选,并对预混式HTR微观混合性能进行实验研究,进一步通过预混组件结构优化实现了对HTR微观混合性能的调变,初步探索了预混性能优化与HTR微观混合性能强化之间的定量关系。针对液-液非均相混合过程,鉴于分散相初始微元尺寸对分散特性有重要影响,设计了预分散式HTR,利用预分散组件调控分散相初始微元尺寸,采用乳化体系对预分散式HTR压降及液-液分散性能展开研究。最后,将预分散式HTR应用于连续湿法磷酸的萃取过程。主要研究结论如下:1、针对快速复杂反应体系,设计了预混式HTR,由预混组件和螺旋盘管两部分组成,其中预混组件用于改变HTR预混性能。根据管内两股液体接触方式的不同,将预混组件分为同轴环管型(CCM)和错流剪切型(CRM)。CFD模拟结果表明,CRM比CCM具备更好的预混性能,从而可以预测装配CRM的HTR (CRM-HTR)的微观混合性能优于装配CCM的HTR (CCM-HTR)的微观混合性能。通过CFD模拟预测结果与微观混合实验结果的一致性讨论优选出CRM,并利用碘化物-碘酸盐体系对CRM-HTR微观混合性能进行实验研究。2、针对CRM-HTR,本课题提出两种结构优化方案,即切向进料和螺旋扰流的方式优化CRM-HTR的预混性能。CFD模拟结果表明两种优化方案均可以改变预混组件内的流体流动状态、强化湍流动能和改善预混性能。进一步,利用碘化物-碘酸盐体系研究了不同优化结构CRM-HTR微观混合性能,研究结果表明通过预混组件预混性能优化来调变CRM-HTR的微观混合性能是可行的。基于CFD模拟结果及微观混合实验结果,定义了无量纲参数RPM,用于表示预混性能优化与CRM-HTR微观混合性能强化的定量关系,不同结构的CRM-HTR的RPM值在0.3-0.5之间。利用团聚模型计算得到不同预混结构CRM-HTR的微观混合时间。3、针对液-液非均相混合体系,设计了预分散式HTR,由预分散组件和螺旋盘管两部分组成,其中预分散组件用于调控分散相初始微元尺寸。利用环己烷-Tween 80-水体系考察了预分散组件中泡沫镍单元个数、孔径及体积流量比、螺旋盘管曲率对压降和液-液分散性能的影响。液-液分散性能研究结果表明,当泡沫镍单元个数为2-6、体积流量比为6-15、总体积流量为960-1730 ml/min时,得到的乳液粒径为30-65 μm,且粒径分布均匀。根据实验结果得到了如下的粒径无因次关联式:d_(32)/D_m = 0.80We_c~(-0.32)De~(-0.24)n_e~(-0.15)ψ~(0.68)计算值与实验值偏差均在±20%以内,吻合较好。4、将预分散式HTR应用于湿法磷酸萃取过程,研究了相比、磷酸质量分数、螺旋盘管曲率、匝数对磷酸萃取效率的影响。当相比为1-3、磷酸质量分数30%-70%、螺旋盘管曲率为7.5-15、匝数为25-50、螺距为10 mm时,预分散式HTR的萃取效率为33%-59%。与其他萃取设备相比,预分散式HTR萃取效率与转盘塔萃取能力相当。
[Abstract]:The mixing process plays an important role in the chemical industry, involving a homogeneous and heterogeneous mixing process. The mixing performance of the reactor has an important influence on the product distribution and product quality. It is an important subject in the study of chemical process strengthening. The spiral coil reactor (Helical Tube Reactor, referred to as HTR) is a typical passive formula. The hybrid equipment has the advantages of compact structure, pressure resistance, less axial backmixing and easy control of the system temperature. It has been applied to the process of nitrification, oxidation, halogenation, crystallization, emulsion polymerization, biodiesel preparation, extraction, and nanomaterial preparation. The above application involves the rapid complex reaction process and liquid liquid heterogeneous mixing process. The basic research on the HTR micro mixing and liquid liquid dispersion performance which plays an important role in the above two kinds of processes is relatively weak. Firstly, in view of the rapid and complex reaction process, the premixed HTR is designed in view of the important influence of premixing performance on the reaction process. The premixed component is carried out by the method of CFD simulation and experimental research. Type optimization was selected and the micro mixing performance of premixed HTR was experimentally studied. The microstructure of HTR was adjusted by the optimization of premixed component structure. The quantitative relationship between the optimization of pre mixing performance and the micro mixing performance of HTR was preliminarily explored. Size has an important influence on dispersion characteristics. Pre dispersed HTR is designed and pre dispersed component is used to regulate the initial microelement size of dispersed phase. The emulsification system is used to study the pre dispersed HTR pressure drop and liquid liquid dispersion. Finally, the pre dispersed HTR is applied to the extraction process of continuous wet process phosphoric acid. The main conclusions are as follows: 1 The premixed HTR is designed, which consists of two parts: premixed component and spiral coil, in which the premixed component is used to change the premixing performance of HTR. According to the different contact modes of two strands of liquid in the tube, the premixed module is divided into coaxial loop tube (CCM) and CRM.CFD simulation results, and CRM is better premixed than CCM. The micro mixing performance of HTR (CRM-HTR) in assembly CRM is better than that of HTR (CCM-HTR) with assembly CCM. CRM is optimized by the agreement between the prediction results of CFD simulation and the results of micro mixing experiment, and the micro mixing performance of CRM-HTR is experimentally studied by iodide iodate system for.2, for C. RM-HTR, in this subject, two structural optimization schemes are proposed, that is, the optimization of the premixing performance of CRM-HTR by tangential feed and spiral spoiler. The results of.CFD simulation show that the two optimization schemes can all change the flow state in the premixed component, strengthen the turbulent kinetic energy and improve the premixing performance. The micro mixing performance of the optimized structure CRM-HTR shows that it is feasible to adjust the micro mixing performance of CRM-HTR by premixing performance optimization. Based on the results of CFD simulation and micro mixing experiment, the dimensionless parameter RPM is defined, which is used to express the quantitative correlation between pre mixing performance optimization and the micro mixing performance enhancement of CRM-HTR. The RPM value of different structures of CRM-HTR is between 0.3-0.5. The micro mixing time of different premixed structure CRM-HTR is calculated by the agglomeration model, and the pre dispersed HTR is designed for the liquid liquid heterogeneous mixture system. The pre dispersed component and the spiral coil are composed of two parts. The pre dispersed component in the mixture is used to control the initial microelement ruler of the dispersed phase. By using cyclohexane -Tween 80- water system, the number of nickel foam units, pore size and volume flow ratio, and the effect of the curvature of the spiral coil on the pressure drop and liquid liquid dispersion are investigated. The results of liquid liquid dispersion study show that when the number of nickel foam units is 2-6, the volume flow ratio is 6-15, the total volume flow rate is 960-1730 ml/min The particle size of the emulsion is 30-65 m, and the particle size distribution is uniform. According to the experimental results, the following correlations are obtained: d_ (32) /D_m = 0.80We_c~ (-0.32) De~ (-0.24) n_e~ (-0.15) n_e~ (-0.15) and experimental values are both within + 20%, and are in good agreement with.4, and the pre dispersion HTR is applied to the process of wet process phosphoric acid extraction. Compared with the effect of phosphoric acid mass fraction, spiral coil curvature and turn number on the efficiency of phosphoric acid extraction, the extraction efficiency of pre dispersed HTR is 33%-59%. compared with other extraction equipment when compared to 1-3, 7.5-15 of phosphoric acid mass fraction 30%-70%, spiral coil curvature of 25-50, and 10 mm of pitch, pre dispersed HTR extraction efficiency and turntable extraction The ability is equal.
【学位授予单位】:北京化工大学
【学位级别】:博士
【学位授予年份】:2017
【分类号】:TQ027.1

【参考文献】

相关期刊论文 前10条

1 刘兆利;张鹏飞;;微反应器在化学化工领域中的应用[J];化工进展;2016年01期

2 张团慧;向鹏;李国斌;苏毅;;湿法磷酸净化技术的研究进展[J];材料导报;2015年15期

3 梁栋;张淑芬;;缩放螺旋混合器的实验评价与优化设计[J];化工学报;2015年08期

4 邹海魁;初广文;向阳;罗勇;孙宝昌;陈建峰;;超重力反应强化技术最新进展[J];化工学报;2015年08期

5 王保华;;湿法磷酸净化脱氟的实验研究[J];化工矿物与加工;2014年07期

6 骆广生;王凯;王佩坚;吕阳成;;微反应器内聚合物合成研究进展[J];化工学报;2014年07期

7 祝杰;叶世超;白洁;吴振元;李俊宏;曾晓娟;;微分散轮盘塔萃取净化湿法磷酸的实验研究[J];化工进展;2013年07期

8 马岩龙;叶世超;辛杨杨;白洁;张则光;;微孔分散轮盘塔净化湿法磷酸的实验研究[J];高校化学工程学报;2013年01期

9 温倩;;我国湿法磷酸净化技术及其工业化进展[J];化学工业;2012年08期

10 宋顺刚;顾雪萍;王嘉骏;冯连芳;;微反应器在聚合反应中的应用[J];化工进展;2012年02期

相关博士学位论文 前3条

1 屠功毅;平面撞击流反应器流动模式、混合机理及过程强化研究[D];华东理工大学;2015年

2 杨海健;新型化学反应器的微观混合实验、理论及应用研究[D];北京化工大学;2007年

3 初广文;定—转子反应器开发研究[D];北京化工大学;2007年

相关硕士学位论文 前2条

1 何爽;螺旋盘管反应器内粘性流体微观混合性能研究[D];北京化工大学;2013年

2 黄美英;溶剂萃取法净化湿法磷酸工艺研究[D];四川大学;2004年



本文编号:2152876

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/huaxuehuagong/2152876.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户23f6e***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com