基于阳极生物膜分布调控的微流体微生物燃料电池传输机理及产电特性
[Abstract]:Microbial fuel cell (MFC) is a green energy technology which uses the metabolism of bacteria to efficiently deal with organic matter in sewage and directly convert it into electrical energy. In recent years, the volume of MFC has gradually reduced to the micro nano scale, which constitutes a microfluidic biofuel battery (MMFC). It is used as an electric equipment and on-line analysis and detection technique. Operation, in the field of environmental monitoring, bioanalysis and micro power supply, has a broad application and development prospect. It is one of the hot topics in the research of micro fluid energy technology. At the present stage, MMFC mainly reduces the proportion of large batteries, is limited by the distribution of the anode side biofilm, the high cost of the electric pool, the large battery internal resistance and the unit cost. At the same time, the flow and transmission phenomena involved in the battery have not been deeply studied. Especially, the film forming characteristics of the biofilm in the micro space under the flow condition have not been explained clearly. In view of the problems of the limited distribution of the biofilm and the low power of the electric pool, this paper from the Engineering Thermo Physics Based on the theory of fluid mechanics and mass transfer in the family, the transmission mechanism and production characteristics in MMFC are studied based on the distribution and regulation of the anode biofilm in the micro channel. The main contents are as follows: (1) the Y type MMFC with the inlet of the single anode liquid is constructed, and the operating parameters such as the concentration of anode liquid, the concentration of cathode liquid, the flow rate of the reaction liquid and so on are studied. The influence of pool performance was observed and the distribution of biofilm distribution along the direction of the anode side was observed. (2) the MMFC of different battery configurations was constructed. From the angle of alleviating the influence of the diffusion mixing region, the MMFC with the gradually diffused channel structure was constructed. The change of the channel junction was studied from the distribution of the biofilm, the internal resistance of the anode side, the battery production performance and so on. The effect of structure on the performance of the battery was constructed. From the angle of the boundary layer of the thin anode side, MMFC was constructed with the multi anode fluid inlet. The electric performance of the single anode liquid imported battery was compared. The mechanism of increasing the anode inlet on the battery production performance was analyzed by controlling the switch state of the anode liquid inlet. (3) a new method was constructed. A new type of three dimensional anode material based on nitrogen doped graphene aerogels was constructed based on the attachment and strengthening idea of a nitrogen doped graphene. The electrode was characterized from the material chemical and biochemical angles, and the electrode was attached to the biofilm, the anode charge migration and the battery production were studied. Based on the flow simplification idea, a kind of air self breathing micro fluid MFC under the control of single strand fluid was constructed. The physical and chemical properties and electrocatalytic properties of the synthesized catalyst were studied. The performance of the battery was tested under continuous and sequence batch conditions. The main results were as follows: 1) a type of Y type based on graphite electrode was constructed. With the increase of the fuel concentration of the anode inlet and the volume flow of the anode liquid, the performance of the cell MMFC increases first and then decreases. The maximum area power density of the output is 618 + 4 m Wm~ (-2) at the inlet fuel concentration of 1500 mgL~ (-1) and the anodic liquid flow rate of 10 m L H-1. It is found that the thickness of the biofilm formed by the producing bacteria gradually thins along the flow direction, that is, the thickness of the biofilm in the inlet section of the fluid is greater than the corresponding thickness of the full development section; 2) the MMFC based on the three microfluidic structures, which is based on the gradual expansion, parallel and shrinking, has successfully avoided the influence of the diffusion mixing zone and has a more compact overall. The biofilm distribution, at the same time, is the lowest resistance of MMFC based on the anodic side, the maximum area power density is 2447.7 + 38.9m Wm~ (-2), which is based on the 5.29 times of MMFC of the gradually shrinking channel (462.7 + 17.5 m Wm~ (-2)) and 1.24 times of MMFC (1980.1 + 27.5 m Wm~ (-2)) based on the parallel channel; 3) constructed based on the multi anode fluid. The imported MMFC (MMFC-MI), the biofilm is densely distributed along the flow direction in the microchannel, especially at the three equal spaced anodic fluid entrance, the distribution of the biofilm is far greater than that of the single import MMFC, and the maximum power density of the MMFC-MI is 85.6% under the closed state of the battery after the inoculation is completed. The main role of road inlet is reflected in the enrichment stage of producing electric bacteria, and the effect of enhanced transmission of anodic liquid after inoculation is relatively limited; 4) a biological anode material based on graphene aerogel (N-GA) is constructed. Its three-dimensional structure and nitrogen containing functional groups are beneficial to strengthen the attachment of electric bacteria to the inner and outer surfaces of the electrode; and doping nitrogen elements at the same time. The transfer resistance of electrons from the surface of the biofilm to the surface of the electrode was reduced; the volume power density of the micro MFC based on the N-GA bio anode was 225 + 12 Wm~ (-3) and 750 + 40 Wm~ (-3) (positive ratio to the anode volume); 5), a self breathing MMFC under the control of single strand fluid was constructed, and a synthetic one was synthesized at the same time. A nitrogen doped graphene aerogel - active carbon (AC@N-GA) oxygen reduction (ORR) catalyst, which contains rich functional groups, shows excellent ORR catalytic performance, the number of electron transfer is 3.92, the yield of H_2O_2 is only 4.5%, the maximum power density of MMFC continuous flow with AC@N-GA as catalyst is 1181.4 + 135.6 Wm~ (-3), under the precondition batch condition The maximum power density is 690.2 + 62.3 Wm~ (-3), and the electricity generation performance is 10 times higher than that of the international report MMFC under the same conditions.
【学位授予单位】:重庆大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:TM911.45
【相似文献】
相关期刊论文 前10条
1 连静;冯雅丽;李浩然;杜竹玮;;微生物燃料电池的研究进展[J];过程工程学报;2006年02期
2 连静;冯雅丽;李浩然;刘志丹;周良;;直接微生物燃料电池的构建及初步研究[J];过程工程学报;2006年03期
3 关毅;张鑫;;微生物燃料电池[J];化学进展;2007年01期
4 洪义国;郭俊;孙国萍;;产电微生物及微生物燃料电池最新研究进展[J];微生物学报;2007年01期
5 丁平;邵海波;刘光洲;段东霞;麻挺;陈嗣俊;王建明;张鉴清;;应用需盐脱硫弧菌的微生物燃料电池发电研究(英文)[J];电化学;2007年02期
6 园丁;;微生物燃料电池:既处理污水又发电[J];污染防治技术;2007年03期
7 刘登;刘均洪;刘海洲;;微生物燃料电池的研究进展[J];化学工业与工程技术;2007年05期
8 张广柱;刘均洪;;微生物燃料电池研究和应用方面的最新进展[J];化学工业与工程技术;2008年04期
9 孙健;胡勇有;;废水处理新理念——微生物燃料电池技术研究进展[J];工业用水与废水;2008年01期
10 王万成;陶冠红;;微生物燃料电池运行条件的优化[J];环境化学;2008年04期
相关会议论文 前10条
1 顾忠泽;吴文果;;微生物燃料电池的研究[A];中国化学会第27届学术年会第05分会场摘要集[C];2010年
2 赵峰;;来自废水的能量-微生物燃料电池[A];2010年海峡两岸环境与能源研讨会摘要集[C];2010年
3 李正龙;刘红;孔令才;韩梅;;可利用空间基地有机废物的微生物燃料电池预研[A];中国空间科学学会第16届空间生命学术研讨会论文摘要集[C];2005年
4 孙健;;废水处理新理念——微生物燃料电池技术研究进展[A];节能环保 和谐发展——2007中国科协年会论文集(一)[C];2007年
5 赵峰;;微生物燃料电池的电子传递及电极反应研究[A];广东省科协资助学术会议总结材料[C];2010年
6 付玉彬;;海底微生物燃料电池研究和应用[A];广东省科协资助学术会议总结材料[C];2010年
7 孔晓英;李连华;李颖;杨改秀;孙永明;;葡萄糖浓度对微生物燃料电池产电性能的影响[A];广东省科协资助学术会议总结材料[C];2010年
8 袁勇;庄莉;周顺桂;;盘管式微生物燃料电池的构建及其应用[A];广东省科协资助学术会议总结材料[C];2010年
9 喻玉立;袁用波;胡忠;;产电菌的选育及其在微生物燃料电池中的应用[A];广东省科协资助学术会议总结材料[C];2010年
10 陈禧;王炜;彭香琴;刘宇波;幸毅明;;微生物燃料电池结构与材料研究进展[A];2013中国环境科学学会学术年会论文集(第八卷)[C];2013年
相关重要报纸文章 前10条
1 ;微生物燃料电池处理污水发电两不误[N];中国环境报;2005年
2 记者 符王润 通讯员 曾晓舵 李洁尉 刘静;微生物燃料电池有很大挖掘空间[N];广东科技报;2010年
3 萧潇;微生物燃料电池:处理污水发电两不误[N];中国煤炭报;2005年
4 记者 毛黎;微生物燃料电池技术又推进一步[N];科技日报;2006年
5 纪振宇;微生物燃料电池为汽车节能环保提供解决方案[N];中国高新技术产业导报;2008年
6 本报记者 赵亚平;虾兵蟹将派上新用场[N];科技日报;2007年
7 张芮;希腊从芝士副产品中回收能源[N];中国石化报;2010年
8 常丽君;高空“超级细菌”可成发电新能源[N];科技日报;2012年
9 编译 杨孝文;微生物机器人吃苍蝇发电[N];北京科技报;2006年
10 记者 陈勇;美科学家开发出微生物燃料电池[N];新华每日电讯;2005年
相关博士学位论文 前10条
1 黄杰勋;产电微生物菌种的筛选及其在微生物燃料电池中的应用研究[D];中国科学技术大学;2009年
2 陶琴琴;微生物燃料电池同步脱氮除磷及产电性能研究[D];华南理工大学;2015年
3 徐磊;微生物燃料电池PB/rGO阴极材料及导电膜自清洁性能研究[D];大连理工大学;2015年
4 臧国龙;基于微生物燃料电池的复杂废弃物处置及光电催化制氢[D];中国科学技术大学;2013年
5 代莹;银/铁—碳基复合体作为微生物燃料电池阴极的性能研究[D];黑龙江大学;2016年
6 龚小波;微生物燃料电池高效电极与界面设计强化产电特性研究[D];哈尔滨工业大学;2016年
7 孙哲;光催化型微生物燃料电池产电特性及对污染物去除研究[D];东华大学;2016年
8 程建萍;微生物燃料电池阴极的功能拓展及机理分析[D];合肥工业大学;2015年
9 孙彩玉;基于BES污水处理—产能研究及微生物群落结构解析[D];东北林业大学;2016年
10 杜月;生物阴极微生物燃料电池特性及其与光催化耦合模式的研究[D];哈尔滨工业大学;2015年
相关硕士学位论文 前10条
1 张鑫;复合微生物燃料电池的研究[D];天津大学;2007年
2 周秀秀;微生物燃料电池阴极催化剂双核酞菁钴的结构及性能优化[D];华南理工大学;2015年
3 黄丽巧;基于微生物燃料电池技术的同步除碳、硝化/反硝化研究[D];华南理工大学;2015年
4 印霞h,
本文编号:2154850
本文链接:https://www.wllwen.com/kejilunwen/huaxuehuagong/2154850.html