预处理调解对剩余污泥发酵液微生物电解产氢影响研究
[Abstract]:Microbial electrolysis cells (MECs) are developed from microbial fuel cells (MFCs), which have the characteristics of low energy input (compared with hydrogen production from electrolytic water) and high hydrogen production rate. MECs mainly use acetate to produce hydrogen. However, how to use MECs to treat real waste and obtain hydrogen simultaneously has become a hot research topic. The problems of traditional anaerobic sludge treatment are long cycle, slow carbon source conversion rate and low recovery rate of energy (methane). Aiming at these problems, an effective sludge pretreatment method-enhanced fermentation and acid production-microbial electrolysis to recover hydrogen energy is proposed, which will enhance the residual sludge separately. In this study, the characteristics of sludge fermentation broth prepared by different pretreatment methods were analyzed, and the organic components of fermentation broth were optimized and optimized. The conversion efficiency of different organic matter components in MECs reactor was determined. The experimental results showed that the hydrogen production rate of MECs was the highest when the initial concentration of protein was 800 mg COD/L under the applied voltage of 0.8 V, and different volatile acid components in fermentation broth had a close effect on the hydrogen production of MECs. Accumulation of acid was disadvantageous to hydrogen production in MECs, but accumulation of butyric acid was relatively beneficial to the increase of hydrogen production in MECs. The hydrogen production rate of MECs was the highest when initial P H value was 6.5, applied voltage was 0.8 V and conductivity was 8. The conductivity of raw fermentation broth can be improved and the hydrogen production efficiency of MECs can be improved. Proper phosphate (PBS) regulation can effectively improve the operation efficiency of MECs reactor. When P H returned to neutrality, the diversity of microorganisms in the MECs reactor increased after acid shock, while for the high-efficiency hydrogen production reactor, in which extracellular electron-transporting bacteria were the dominant bacteria, the cytochrome C gene-related bacteria could recover to the dominant bacteria quickly after removal of short acid shock, which was related to carbon utilization. Compared with thermal pretreatment, alkali pretreatment and thermo-alkali pretreatment of sludge fermentation broth inoculated with MECs reactor, the results showed that the VFAs released more fully and the acetic acid utilization rate of fermentation broth was the highest in MECs. The hydrogen recovery efficiency analysis of sludge fermentation broth showed that the hydrogen recovery efficiency of the combined pretreatment sludge fermentation broth with MECs was the highest, and the hydrogen yield per unit sludge was 34.4 +4.1 m L H_2/g VSS, and the hydrogen output per day was 19.3 +2.3 m L H_2/d. In view of the effect of methane production from sludge fermentation broth treated with MECs on the hydrogen recovery rate of MECs, a method of increasing appropriate amount of micro-oxygen aeration formation in sludge pretreatment process to effectively inhibit methanogens in MECs was proposed. The results showed that short-term aeration could effectively increase the methanogens in MECs treatment sludge. Hydrogen recovery from fermentation broth. On the one hand, the release of organic compounds in the hydrolysis process of excess sludge can be enhanced by appropriate micro-oxygen aeration pretreatment during sludge pretreatment. The results show that the accumulation of total volatile fatty acids (TVFAs) in sludge fermentation broth can be improved by adding appropriate micro-oxygen pretreatment under alkali treatment conditions. In the operation stage of hydrogen production, short-term (10 min) air exposure to MECs biofilm could effectively inhibit methane production. The recovery rate of hydrogen production increased by 60% and the hydrogen yield reached 1.3 m L H_2/m L reactor/d. Anaerobic fermentation was the most significant microbial community in the combined single-chamber MECs reactor. The results showed that beta-Proteobacteria, Legionella and Clostridium were the main microbial community during the operation of MECs reactor. Clostridium increased from 4.1% at the start-up stage to 19.3% at the hydrogen production stage, and Solobacterium increased to 19.3%. 10.5%; the beta-Proteobacteria closely related to the electron transfer process of microbial electrode system decreased slightly, and the beta-Proteobacteria accounted for 21.3% at the highest hydrogen production efficiency of the reactor. The results preliminarily revealed the anaerobic fermentation flora and the MEC electrode functional flora in the process of hydrogen recovery efficiency of the system and surplus sludge fermentation broth combined with microbial electrolysis. The internal relationship of the interaction process.
【学位授予单位】:哈尔滨工业大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:X703;TM911.45
【相似文献】
相关期刊论文 前10条
1 卢怡,张无敌,宋洪川,李建昌,夏朝凤;猪粪发酵产氢潜力的研究[J];可再生能源;2003年02期
2 蔡木林,刘俊新;利用废水和固体废弃物中有机质发酵产氢研究进展[J];环境污染治理技术与设备;2004年06期
3 康铸慧,王磊,郑广宏,周琪;微生物产氢研究的进展[J];工业微生物;2005年02期
4 张军合;张全国;尤希凤;刘振波;;环流型光生物反应器光合产氢运行条件的研究[J];农业环境科学学报;2005年06期
5 李建昌;刘士清;张无敌;官会林;尹芳;孙可伟;;发酵产氢面临的问题及对策[J];可再生能源;2006年04期
6 曹东福;黄兵;张续春;;利用有机质发酵产氢的影响因素与应用前景[J];环境科学与管理;2007年04期
7 常娥;齐亚林;邬小兵;徐惠娟;龙敏南;;产氢细菌Enterbacter sakazakii HP的分离及产氢特性[J];微生物学通报;2007年02期
8 汤桂兰;孙振钧;李玉英;;微生物发酵法制氢与产氢微生物的研究进展[J];农业工程学报;2007年12期
9 王东阳;李永峰;任南琪;陈红;焦安英;;新型产氢细菌Biohybactium R3利用乳糖进行发酵产氢的实验研究[J];现代化工;2008年S2期
10 秦智;任南琪;李建政;;产氢菌的投加方式对强化发酵菌群产氢的影响[J];太阳能学报;2008年07期
相关会议论文 前10条
1 刘艳;黄晓婷;吴畏;;利用厨余进行厌氧发酵产氢的研究[A];中国环境科学学会2009年学术年会论文集(第二卷)[C];2009年
2 赫倚风;郭婕;周彩虹;张志萍;王毅;张全国;;光合产氢过程中微生物代谢热实验研究[A];高等学校工程热物理第十九届全国学术会议论文集[C];2013年
3 任南琪;林明;马汐平;王爱杰;李建政;;一株厌氧高效产氢细菌的筛选及其耐酸性的研究[A];中国太阳能学会2001年学术会议论文摘要集[C];2001年
4 李永峰;李鹏;李建政;;高效产氢细菌的分离鉴定与产氢作用[A];2004年中国生物质能技术与可持续发展研讨会论文集[C];2004年
5 刘旭;马春红;李晓煜;何晓棣;甄占萍;吴哲;王立安;贾银锁;;利用农林废弃物发酵产氢的研究[A];植保科技创新与病虫防控专业化——中国植物保护学会2011年学术年会论文集[C];2011年
6 张全国;雷廷宙;尤希凤;杨群发;原玉丰;张军合;;影响天然混合红螺菌产氢因素的实验研究[A];2004年中国生物质能技术与可持续发展研讨会论文集[C];2004年
7 李永峰;陈晟;史乃鉴;王远强;;产氢微生物培养特性及其扩大培养的研究[A];上海市化学化工学会2007年度学术年会论文摘要集[C];2007年
8 王媛媛;张衍林;晏水平;周洪亮;李武;;两相联合厌氧发酵产氢气—甲烷的工艺参数验证[A];2011年中国沼气学会学术年会暨第八届理事会第二次会议论文集[C];2011年
9 王相晶;任南琪;李建政;张颖;陈兆波;郭婉茜;李永锋;;影响发酵细菌B49产氢因子研究[A];21世纪太阳能新技术——2003年中国太阳能学会学术年会论文集[C];2003年
10 郑国香;任南琪;钟溢键;李小玲;吴川福;周湘良;;碳源、氮源及碳/氮比值对发酵产氢细菌RF-9产氢性能的影响[A];第七届全国氢能学术会议论文集[C];2006年
相关博士学位论文 前10条
1 赵磊;嗜热菌W16利用秸秆水解液混合糖产氢特性及代谢机制研究[D];哈尔滨工业大学;2015年
2 刘充;预处理调解对剩余污泥发酵液微生物电解产氢影响研究[D];哈尔滨工业大学;2016年
3 陈明;光合细菌利用低分子有机酸产氢的试验研究[D];浙江大学;2008年
4 刘洪艳;厌氧发酵产氢菌筛选及产氢菌突变体库构建[D];中国科学院研究生院(海洋研究所);2010年
5 曹广丽;高效利用玉米秸秆的产氢菌种及其产氢性能研究[D];哈尔滨工业大学;2010年
6 陈瑛;发酵产氢菌株与混合培养系统种群生态研究[D];哈尔滨工业大学;2007年
7 戚峰;生物质高效水解及发酵产氢的机理研究[D];浙江大学;2007年
8 宋朝霞;秸秆类生物质暗发酵产氢关键参数优化及其机理研究[D];郑州大学;2014年
9 牛坤;Klebsiella pneumoniae ECU-15菌株暗发酵产氢过程分析及其利用木质纤维素水解液的实验研究[D];华东理工大学;2010年
10 刘冰峰;光发酵细菌的选育及其与暗发酵细菌耦合产氢研究[D];哈尔滨工业大学;2010年
相关硕士学位论文 前10条
1 刘旭;产氢厌氧细菌的分离筛选及其产氢效能评价[D];河北师范大学;2011年
2 孙煌;基于纳米MoS_2为催化阴极的MEC的产氢特性及其性能优化[D];郑州大学;2016年
3 何泽;不同发酵制氢工艺控制条件优化及产氢效能[D];哈尔滨工业大学;2016年
4 李菁;玉米芯的预处理及其产氢工艺研究[D];哈尔滨工业大学;2016年
5 辛红梅;Fe_3O_4纳米颗粒对废水厌氧发酵产氢的影响研究[D];哈尔滨工业大学;2016年
6 刘颖;暗发酵细菌与光发酵细菌两步法联合产氢研究[D];哈尔滨工业大学;2007年
7 韩博;产氢细菌Ethanoligenens harbinense R3的发酵产氢基质与效能的研究[D];东北林业大学;2009年
8 安静;光源和光谱对光合产氢菌群产氢工艺影响研究[D];河南农业大学;2009年
9 邓文武;外加电场辅助质子传递供类球红细菌光合产氢研究[D];西南大学;2010年
10 张娜;产氢菌的分离鉴定及产氢条件的优化[D];西北大学;2010年
,本文编号:2208914
本文链接:https://www.wllwen.com/kejilunwen/huaxuehuagong/2208914.html