集料-基体界面对水泥基材料碳化性能的影响
[Abstract]:The carbonization reaction of cement concrete refers to the neutralization reaction between the carbon dioxide in the atmosphere and the calcium hydroxide, C-S-H gel, ettringite and the like dissolved in the pore solution through the pores or cracks of the concrete. The neutralization reaction of concrete results in shrinkage of cement stone and cracks. and the service life of the concrete is shortened. The carbonization reaction can cause the change of microstructure inside the concrete, and the various microstructure characteristics of the concrete can also have different influences on the carbonization process. The microstructure of concrete mainly consists of its phase composition, porosity, pore size distribution and so on. It can be divided into interface transition zone and matrix part. The interface transition zone is the weak link of concrete, and the interface transition zone and its microstructure have an important influence on its transmission performance and durability. The interface transition zone and its microstructure must also be an important aspect of the carbonization process of concrete, which can provide the basis for establishing concrete carbonation model considering interface effect. In this paper, the microstructure of interface transition zone before and after carbonization is characterized by interfacial carbonization depth test and nano mechanical properties, and the evolution law of interface transition zone microstructure before and after carbonization is studied by using back scattering (BSE) image analysis technique. The effect of aggregate-matrix interface on carbonization of cement concrete was studied in four aspects: the effect of the interface characteristics on the carbonization resistance of concrete. Due to the difference between the interface transition zone and the microstructure of the matrix, different carbonization phenomena must occur during the carbonization process. the interface transition zone has the characteristics of large porosity, loose structure, high calcium hydroxide content and directional distribution, low hydration cement content and the like, so that the carbonization rate of the interface is fast to the matrix. In this paper, a rule-shaped aggregate is designed. According to the carbonization test of matrix interface, a net slurry test piece with water-cement ratio of 0. 60, 0. 53 and 0. 35 was formed, and the two ends of the test piece were carbonized at the carbonization surface for 28d, and the carbonization depth of the interface and the substrate was measured by TUNEL method. The experimental results show that the carbonization depth of the interface is 2-3 times that of the matrix, and the carbonization curve is formed in the vicinity of the interface under the influence of the carbonization interface effect. Therefore, the transmission speed of CO2 is several times the transmission speed of the base material, and the interface transmission is one of the reasons for forming part of the carbonization zone. In this paper, the physical model of carbonization of cement-based material considering ITZ effect is presented. Nanoindentation technique can test the nano mechanical properties of interface transition zone and characterize the microstructure of interface transition zone, thus revealing the evolution law of microstructure of interface transition zone before and after carbonization. In this paper, the interface of the simulated concrete with different water-cement ratio is designed, and the microstructure characteristics of the interface transition zone before and after carbonization are tested by using nano-indentation technology. The results show that the transition area of the interface still exists after carbonization, and the elastic modulus and hardness value of the interface are improved. The size of the interface transition zone is reduced from about 50-60. m u.m before carbonization to about 20 ~ 30. m The evolution of the microstructure before and after carbonization can reveal the change of the concrete properties of the carbonization process. In this paper, BSE experiment was carried out on the interface sample with different water-cement ratio, the morphology of interface transition zone was analyzed according to BSE image, and the change of porosity and phase composition before and after carbonization of interface transition zone was quantitatively analyzed. The experimental results show that the porosity of the interface transition zone (in the range of not less than 200nm) is higher than that of the matrix, and the porosity after carbonization decreases and the content of unhydrated cement is decreased. The porosity of the transition zone of the post-carbonization interface is still higher than that of the matrix, and the amount of unhydrated cement is much lower than that of the matrix. Finally, in order to investigate the effect of the change of interface microstructure on the whole anti-carbonization performance of concrete, this paper designs the carbonization experiment of aggregate-wrapped concrete test piece which changes the interface condition. The experimental results show that the cement mortar aggregate with high water-cement ratio can improve the overall effective water-cement ratio of concrete, increase the carbonization depth, and reduce the overall anti-carbonization performance of concrete. SEM image analysis showed. Under the same concrete water-cement ratio, the interface between the interface of the slurry-wrapped aggregate and the non-wrapped slurry is loose and the porosity is large.
【学位授予单位】:东南大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TU528
【相似文献】
相关期刊论文 前10条
1 江晨晖;吴星春;胡丹霞;;界面过渡区对混凝土性能的影响及其改善措施[J];中国建材科技;2006年02期
2 陈惠苏;孙伟;STROEVEN Piet;;水泥基复合材料界面过渡区体积分数的定量计算[J];复合材料学报;2006年02期
3 郑克仁;孙伟;赵庆新;张云升;周伟玲;郭丽萍;;基于混凝土基体和界面过渡区性质的疲劳方程[J];硅酸盐学报;2007年02期
4 朱晓斌;姚婷;洪锦祥;;混凝土集料-浆体界面过渡区对韧性的影响及调控技术[J];新型建筑材料;2014年03期
5 许艳;胡小芳;;混凝土界面过渡区表面形貌的分形维数表征[J];硅酸盐通报;2009年05期
6 尚建丽;邢琳琳;;钢渣粗骨料混凝土界面过渡区的研究[J];建筑材料学报;2013年02期
7 陈惠苏;孙伟;赵庆新;;截面分析法对任意凸形粒子周围界面过渡区厚度过高估计的解析解[J];复合材料学报;2006年04期
8 陈惠苏,孙伟,赵庆新,Stroeven Piet;截面分析法对界面过渡区厚度的放大作用[J];硅酸盐学报;2003年11期
9 王荃;詹炳根;杨磊;周万良;孙道胜;;粉煤灰抑制ASR的机理分析[J];合肥工业大学学报(自然科学版);2011年04期
10 孙国文;孙伟;张云升;刘志勇;;水泥基复合材料界面过渡区体积分数的定量计算[J];哈尔滨工业大学学报;2011年11期
相关会议论文 前10条
1 陈惠苏;孙伟;赵庆新;Stroeven Piet;Stroeven Martijn;Sluys Bert;;纤维-水泥浆体界面过渡区初始微观结构的计算机模拟[A];先进纤维混凝土 试验·理论·实践——第十届全国纤维混凝土学术会议论文集[C];2004年
2 吴崇豪;廖惠雯;简国璋;;轻质骨材混凝土界面过渡区之微观分析[A];“第九届全国轻骨料及轻骨料混凝土学术讨论会”暨“第三届海峡两岸轻骨料混凝土产制与应用技术研讨会”论文集[C];2008年
3 叶正茂;常钧;芦令超;程新;周宗辉;;硫铝酸盐水泥混凝土界面过渡区的研究[A];中国硅酸盐学会混凝土水泥制品分会第七届理事会议暨学术交流大会论文集[C];2005年
4 陈惠苏;孙伟;叶光;Stroeven Piet;Stroeven Martijn;van Breugel Klass;;邻近集料表面间距变化对水化前后集料-浆体界面过渡区微观结构的影响[A];中国硅酸盐学会2003年学术年会论文摘要集[C];2003年
5 郑安顺;彭献生;林建国;;轻质骨材含水状态对混凝土过渡区微观性质之影响[A];“第九届全国轻骨料及轻骨料混凝土学术讨论会”暨“第三届海峡两岸轻骨料混凝土产制与应用技术研讨会”论文集[C];2008年
6 颜聪;黄中和;汤兆伟;;从轻质骨材及界面过渡区特质探讨轻质混凝土之强度与耐久性[A];“第九届全国轻骨料及轻骨料混凝土学术讨论会”暨“第三届海峡两岸轻骨料混凝土产制与应用技术研讨会”论文集[C];2008年
7 邱晨;张亚梅;;骨料尺寸与水灰比对混凝土界面过渡区微结构的影响[A];中国硅酸盐学会水泥分会第三届学术年会暨第十二届全国水泥和混凝土化学及应用技术会议论文摘要集[C];2011年
8 陈惠苏;孙伟;叶光;Stroeven Piet;Stroeven Martiji;van Breugel Klass;;邻近集料表面间距变化对水化前后集料—浆体界面过渡区微观结构的影响[A];中国硅酸盐学会2003年学术年会水泥基材料论文集(下册)[C];2003年
9 朱巧智;王德君;赵亮;李秀圣;;SiO_2/SiC界面过渡区结构研究[A];第十五届全国化合物半导体材料,,微波器件和光电器件学术会议论文集[C];2008年
10 吴少鹏;玄东兴;水中和;;混凝土近表面裸露骨料与基体的力学行为[A];第九届全国水泥和混凝土化学及应用技术会议论文汇编(上卷)[C];2005年
相关博士学位论文 前1条
1 朱巧智;SiO_2/SiC界面过渡区及其等离子体钝化工艺研究[D];大连理工大学;2013年
相关硕士学位论文 前8条
1 舒畅;混凝土界面过渡区和冻融耐久性纳米划痕表征研究[D];上海交通大学;2015年
2 占华刚;集料-基体界面对水泥基材料碳化性能的影响[D];东南大学;2015年
3 杨磊;混凝土界面过渡区的特点与碱硅酸反应的关系[D];合肥工业大学;2010年
4 魏国强;碱对混凝土界面过渡区的影响[D];合肥工业大学;2009年
5 郑蓉美;盐对界面过渡区组成与结构的影响[D];合肥工业大学;2009年
6 王晓海;碱环境下硬化混凝土界面过渡区的组成和结构[D];合肥工业大学;2009年
7 马德利;锂盐抑制混凝土碱硅酸反应的机理[D];合肥工业大学;2010年
8 王荃;活性混合材料抑制混凝土碱硅酸反应的机理[D];合肥工业大学;2010年
本文编号:2252532
本文链接:https://www.wllwen.com/kejilunwen/huaxuehuagong/2252532.html