当前位置:主页 > 科技论文 > 化学工程论文 >

集料-基体界面对水泥基材料碳化性能的影响

发布时间:2018-10-05 07:31
【摘要】:水泥混凝土的碳化反应是指大气中的CO2通过混凝土的孔隙或裂缝进入溶解于孔溶液中与混凝土的氢氧化钙、C-S-H凝胶、钙矾石等物相发生中性化反应。混凝土的中性化反应会引起水泥石的收缩,产生裂缝.导致混凝土的劣化,缩短混凝土的服役寿命。碳化反应会引起混凝土内部微结构的变化,同时混凝上各种微结构特征也会对碳化过程产生不同影响。混凝土的微结构主要包含其物相组成、孔隙率、孔径分布等,可以分为界面过渡区和基体两部分。界面过渡区是混凝土的薄弱环节,界面过渡区及其微结构对其传输性能和耐久性有重要影响。界面过渡区及其微结构也必然是影响混凝土碳化过程的一个重要方面,能够为建立考虑界面影响的混凝土碳化模型提供依据。本文主要以界面碳化深度测试,纳米力学性能表征碳化前后界面过渡区微结构,使用背散射(BSE)图像分析技术研究界面过渡区微结构在碳化前后的演变规律,以及界面特征的改变对混凝土抗碳化性能的影响四个方面研究了集料-基体界面对水泥混凝土碳化过程的影响。由于界面过渡区与基体的微结构存在差别,碳化过程中必定会出现不同的碳化现象。界面过渡区具有孔隙率大、结构疏松,氢氧化钙含量较多且呈定向分布,未水化水泥含量较低等特征,使得界面的碳化速率快于基体。本文设计了规则形状的集料.基体界面碳化试验,成型了水胶比为0.60,0.53和0.35的含石灰石和花岗岩石片(作为集料)的净浆试件,把试件两端作为碳化面碳化28d,用酚酞法测量了界面与基体的碳化深度。实验结果表明:界面的碳化深度是基体的2-3倍,并且在碳化界面效应的影响下,碳化曲线在界面附近形成-个具有距离界面越近碳化深度越深的特征的曲线。因此,CO2在界面传输速度是基材传输速度的数倍,界面传输是形成部分碳化区的原因之一。在此基础上本文提出了考虑ITZ影响的水泥基材料碳化的物理模型。纳米压痕技术能够测试界面过渡区纳米力学性能,表征界面过渡区微结构,从而揭示碳化前后界面过渡区微结构的演变规律。本文设计了不同水胶比的模拟混凝土的界面,采用纳米压痕技术测试了碳化前后界面过渡区的微结构特征。实验结果表明:碳化后界面过渡区仍然存在,且其与基体的弹性模量和硬度值均有提高,界面过渡区尺寸由碳化前的约50-60μm降低到碳化后的约20~30μm。说明碳化后界面过渡区仍然是CO2扩散的快速通道。界面过渡区孔隙率等微结构在碳化前后的演变能揭示其碳化过程的混凝土性能变化的原因。本文对不同水胶比的界面试样进行了BSE实验,根据BSE图像分析了界面过渡区的形貌并定量分析了界面过渡区碳化前后孔隙率和物相组成的变化。实验表明,界面过渡区的孔隙(在孔尺寸不小于200nm的范围)率高于基体,且碳化后孔隙率均有所降低,未水化水泥含量均有不同程度的减少。碳化后界面过渡区的孔隙率仍然高于基体,而其未水化水泥的减少量较基体多。最后,为了探讨界面微结构的改变对混凝土整体抗碳化性能的影响,本文设计了改变界面条件的骨料裹浆混凝土试件的碳化实验。实验结果表明:高水胶比的襄浆骨料会提高混凝土的整体有效水胶比,增加碳化深度,降低了混凝土整体抗碳化性能。SEM图像分析表明.相同混凝土水胶比下,裹浆骨料的界面较非裹浆的界面结构疏松,孔隙率大。
[Abstract]:The carbonization reaction of cement concrete refers to the neutralization reaction between the carbon dioxide in the atmosphere and the calcium hydroxide, C-S-H gel, ettringite and the like dissolved in the pore solution through the pores or cracks of the concrete. The neutralization reaction of concrete results in shrinkage of cement stone and cracks. and the service life of the concrete is shortened. The carbonization reaction can cause the change of microstructure inside the concrete, and the various microstructure characteristics of the concrete can also have different influences on the carbonization process. The microstructure of concrete mainly consists of its phase composition, porosity, pore size distribution and so on. It can be divided into interface transition zone and matrix part. The interface transition zone is the weak link of concrete, and the interface transition zone and its microstructure have an important influence on its transmission performance and durability. The interface transition zone and its microstructure must also be an important aspect of the carbonization process of concrete, which can provide the basis for establishing concrete carbonation model considering interface effect. In this paper, the microstructure of interface transition zone before and after carbonization is characterized by interfacial carbonization depth test and nano mechanical properties, and the evolution law of interface transition zone microstructure before and after carbonization is studied by using back scattering (BSE) image analysis technique. The effect of aggregate-matrix interface on carbonization of cement concrete was studied in four aspects: the effect of the interface characteristics on the carbonization resistance of concrete. Due to the difference between the interface transition zone and the microstructure of the matrix, different carbonization phenomena must occur during the carbonization process. the interface transition zone has the characteristics of large porosity, loose structure, high calcium hydroxide content and directional distribution, low hydration cement content and the like, so that the carbonization rate of the interface is fast to the matrix. In this paper, a rule-shaped aggregate is designed. According to the carbonization test of matrix interface, a net slurry test piece with water-cement ratio of 0. 60, 0. 53 and 0. 35 was formed, and the two ends of the test piece were carbonized at the carbonization surface for 28d, and the carbonization depth of the interface and the substrate was measured by TUNEL method. The experimental results show that the carbonization depth of the interface is 2-3 times that of the matrix, and the carbonization curve is formed in the vicinity of the interface under the influence of the carbonization interface effect. Therefore, the transmission speed of CO2 is several times the transmission speed of the base material, and the interface transmission is one of the reasons for forming part of the carbonization zone. In this paper, the physical model of carbonization of cement-based material considering ITZ effect is presented. Nanoindentation technique can test the nano mechanical properties of interface transition zone and characterize the microstructure of interface transition zone, thus revealing the evolution law of microstructure of interface transition zone before and after carbonization. In this paper, the interface of the simulated concrete with different water-cement ratio is designed, and the microstructure characteristics of the interface transition zone before and after carbonization are tested by using nano-indentation technology. The results show that the transition area of the interface still exists after carbonization, and the elastic modulus and hardness value of the interface are improved. The size of the interface transition zone is reduced from about 50-60. m u.m before carbonization to about 20 ~ 30. m The evolution of the microstructure before and after carbonization can reveal the change of the concrete properties of the carbonization process. In this paper, BSE experiment was carried out on the interface sample with different water-cement ratio, the morphology of interface transition zone was analyzed according to BSE image, and the change of porosity and phase composition before and after carbonization of interface transition zone was quantitatively analyzed. The experimental results show that the porosity of the interface transition zone (in the range of not less than 200nm) is higher than that of the matrix, and the porosity after carbonization decreases and the content of unhydrated cement is decreased. The porosity of the transition zone of the post-carbonization interface is still higher than that of the matrix, and the amount of unhydrated cement is much lower than that of the matrix. Finally, in order to investigate the effect of the change of interface microstructure on the whole anti-carbonization performance of concrete, this paper designs the carbonization experiment of aggregate-wrapped concrete test piece which changes the interface condition. The experimental results show that the cement mortar aggregate with high water-cement ratio can improve the overall effective water-cement ratio of concrete, increase the carbonization depth, and reduce the overall anti-carbonization performance of concrete. SEM image analysis showed. Under the same concrete water-cement ratio, the interface between the interface of the slurry-wrapped aggregate and the non-wrapped slurry is loose and the porosity is large.
【学位授予单位】:东南大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TU528

【相似文献】

相关期刊论文 前10条

1 江晨晖;吴星春;胡丹霞;;界面过渡区对混凝土性能的影响及其改善措施[J];中国建材科技;2006年02期

2 陈惠苏;孙伟;STROEVEN Piet;;水泥基复合材料界面过渡区体积分数的定量计算[J];复合材料学报;2006年02期

3 郑克仁;孙伟;赵庆新;张云升;周伟玲;郭丽萍;;基于混凝土基体和界面过渡区性质的疲劳方程[J];硅酸盐学报;2007年02期

4 朱晓斌;姚婷;洪锦祥;;混凝土集料-浆体界面过渡区对韧性的影响及调控技术[J];新型建筑材料;2014年03期

5 许艳;胡小芳;;混凝土界面过渡区表面形貌的分形维数表征[J];硅酸盐通报;2009年05期

6 尚建丽;邢琳琳;;钢渣粗骨料混凝土界面过渡区的研究[J];建筑材料学报;2013年02期

7 陈惠苏;孙伟;赵庆新;;截面分析法对任意凸形粒子周围界面过渡区厚度过高估计的解析解[J];复合材料学报;2006年04期

8 陈惠苏,孙伟,赵庆新,Stroeven Piet;截面分析法对界面过渡区厚度的放大作用[J];硅酸盐学报;2003年11期

9 王荃;詹炳根;杨磊;周万良;孙道胜;;粉煤灰抑制ASR的机理分析[J];合肥工业大学学报(自然科学版);2011年04期

10 孙国文;孙伟;张云升;刘志勇;;水泥基复合材料界面过渡区体积分数的定量计算[J];哈尔滨工业大学学报;2011年11期

相关会议论文 前10条

1 陈惠苏;孙伟;赵庆新;Stroeven Piet;Stroeven Martijn;Sluys Bert;;纤维-水泥浆体界面过渡区初始微观结构的计算机模拟[A];先进纤维混凝土 试验·理论·实践——第十届全国纤维混凝土学术会议论文集[C];2004年

2 吴崇豪;廖惠雯;简国璋;;轻质骨材混凝土界面过渡区之微观分析[A];“第九届全国轻骨料及轻骨料混凝土学术讨论会”暨“第三届海峡两岸轻骨料混凝土产制与应用技术研讨会”论文集[C];2008年

3 叶正茂;常钧;芦令超;程新;周宗辉;;硫铝酸盐水泥混凝土界面过渡区的研究[A];中国硅酸盐学会混凝土水泥制品分会第七届理事会议暨学术交流大会论文集[C];2005年

4 陈惠苏;孙伟;叶光;Stroeven Piet;Stroeven Martijn;van Breugel Klass;;邻近集料表面间距变化对水化前后集料-浆体界面过渡区微观结构的影响[A];中国硅酸盐学会2003年学术年会论文摘要集[C];2003年

5 郑安顺;彭献生;林建国;;轻质骨材含水状态对混凝土过渡区微观性质之影响[A];“第九届全国轻骨料及轻骨料混凝土学术讨论会”暨“第三届海峡两岸轻骨料混凝土产制与应用技术研讨会”论文集[C];2008年

6 颜聪;黄中和;汤兆伟;;从轻质骨材及界面过渡区特质探讨轻质混凝土之强度与耐久性[A];“第九届全国轻骨料及轻骨料混凝土学术讨论会”暨“第三届海峡两岸轻骨料混凝土产制与应用技术研讨会”论文集[C];2008年

7 邱晨;张亚梅;;骨料尺寸与水灰比对混凝土界面过渡区微结构的影响[A];中国硅酸盐学会水泥分会第三届学术年会暨第十二届全国水泥和混凝土化学及应用技术会议论文摘要集[C];2011年

8 陈惠苏;孙伟;叶光;Stroeven Piet;Stroeven Martiji;van Breugel Klass;;邻近集料表面间距变化对水化前后集料—浆体界面过渡区微观结构的影响[A];中国硅酸盐学会2003年学术年会水泥基材料论文集(下册)[C];2003年

9 朱巧智;王德君;赵亮;李秀圣;;SiO_2/SiC界面过渡区结构研究[A];第十五届全国化合物半导体材料,,微波器件和光电器件学术会议论文集[C];2008年

10 吴少鹏;玄东兴;水中和;;混凝土近表面裸露骨料与基体的力学行为[A];第九届全国水泥和混凝土化学及应用技术会议论文汇编(上卷)[C];2005年

相关博士学位论文 前1条

1 朱巧智;SiO_2/SiC界面过渡区及其等离子体钝化工艺研究[D];大连理工大学;2013年

相关硕士学位论文 前8条

1 舒畅;混凝土界面过渡区和冻融耐久性纳米划痕表征研究[D];上海交通大学;2015年

2 占华刚;集料-基体界面对水泥基材料碳化性能的影响[D];东南大学;2015年

3 杨磊;混凝土界面过渡区的特点与碱硅酸反应的关系[D];合肥工业大学;2010年

4 魏国强;碱对混凝土界面过渡区的影响[D];合肥工业大学;2009年

5 郑蓉美;盐对界面过渡区组成与结构的影响[D];合肥工业大学;2009年

6 王晓海;碱环境下硬化混凝土界面过渡区的组成和结构[D];合肥工业大学;2009年

7 马德利;锂盐抑制混凝土碱硅酸反应的机理[D];合肥工业大学;2010年

8 王荃;活性混合材料抑制混凝土碱硅酸反应的机理[D];合肥工业大学;2010年



本文编号:2252532

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/huaxuehuagong/2252532.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户31806***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com