当前位置:主页 > 科技论文 > 化学工程论文 >

压缸切向剖分式超高压模具的研究

发布时间:2018-10-05 20:10
【摘要】:随着现代科技的飞速发展,广泛应用于工业生产和科学研究中的超高压设备在高压技术方面发挥着越来越重要的作用。作为超高压设备的核心部件,超高压模具一直存在着两个方面的发展需求,一方面是尽可能获得更高的压力,另一方面是提供尽可能大的腔体容积。模具大型化是现代超高压设备发展的必然要求,因其不仅仅表现为可以提高合成产品的产量,更重要的是可以提高产品的质量。然而,在现有的技术下,设备大型化时其零件的尺寸也成倍增大,这将导致大尺寸的硬质合金零件的成本极高、制造难度大、质量难以得到保证,并且模具的极限承载能力也有所降低。基于此,研究了具有剖分式压缸的超高压模具,此结构不仅能降低压缸结构的受力,而且可以显著减小零件的尺寸。在保证模具承载能力的前提下,扩大腔体容积,使结构易于大型化应用。剖分式结构具有两种剖分形式:径向剖分和切向剖分。在极限承载能力方面,切向剖分式压缸具有显著的优势。本文通过数值模拟对压缸切向剖分式超高压模具进行一系列的研究和优化设计,为剖分式超高压模具的设计制造和实际应用提供一定的理论依据和科学参考。本文研究的主要内容和结论如下:1.探讨具有剖分式压缸的超高压模具的设计原理对超高压模具中的硬质合金压缸进行剖分,能够消除传统年轮式模具的周向拉应力过大的缺点,并且可以减小压缸零件的尺寸。有两种形式:径向剖分是剖分面沿着压缸的半径方向进行剖分;切向剖分是一种全新的剖分形式,其剖分面垂直于压缸的半径方向,是沿着内腔的切线方向进行剖分。对剖分式模具进行相关的理论分析,推导出相关参数的计算方法和设计原则,为模具的初步设计提供理论依据。2.超高压模具的有限元建模采用数值模拟软件对超高压模具进行有限元建模。对年轮式超高压模具进行数值模拟,比较模具在预紧状态和工作状态两种情况下的应力分布情况,分析压缸和支撑环的应力分布特点,结果表明压缸内壁上的周向拉应力是导致模具失效的主要原因。3.剖分式结构与年轮式结构的比较和分析分析和比较年轮式压缸、径向剖分式压缸和切向剖分式压缸的受力情况。结果表明:在相同的载荷下,三种结构的受力依次减小;径向剖分式结构能够显著减小周向拉应力;切向剖分式结构可以完全消除拉应力,并产生周向压应力;由于相邻切向剖分块之间存在相互挤压和摩擦作用,这种相互作用可以自协调和均匀化压缸的应力分布,进而使材料性能得到充分利用,并提高压缸的承载能力。此外,工作状态下,切向剖分式压缸为三向受压的应力状态,这对硬质合金材料非常有利。极限压力测试实验表明,模具破裂时三种结构的腔内名义压力分别为5.75GPa、7.27GPa、8.39GPa。4.剖分块数对剖分式模具的影响数值模拟的结果显示,对于径向剖分式结构,随着剖分块数增多,压缸的受力并不会发生显著变化;对于切向剖分式结构,剖分块数增多,压缸的受力相应地减小,应力分布趋于均匀,极限承载能力提高。从多个角度讨论压缸剖分块数的选取原则,可概括为:压缸的尺寸较小时宜选用较少的剖分块数,压缸的尺寸较大时宜选用较多的剖分块数,并且当剖分块的外轮廓接近规则形状时,其受力更合理,应力分布更加均匀,承受载荷、抵抗冲击、防止脆断的能力更强。5.切向剖分式压缸的结构优化设计对切向剖分式压缸的关键几何参数进行优化设计。分析和比较压缸的高径比、厚度比、高度比和半锥角对结构受力的影响,并得到在一定条件下的各参数的最佳优化值。讨论剖分面上的摩擦系数对压缸工作的影响,结果表明相邻剖分块之间的相互作用存在一个合理的区间,这种作用过小或者过大都会对压缸受力产生不利的影响。6.采用剖分式结构设计大腔体超高压模具基于超高压设备大型化的发展趋势,在模具能够承受较高极限压力的条件下,尝试设计具有大样品腔容积的超高压模具。采用剖分式压缸结构来减小硬质合金零件的尺寸,降低制造难度和成本,提高其材料质量,并改善压缸结构的受力。样品腔直径为?80mm,硬质合金压缸采用两层剖分式结构,内层为切向剖分式结构,外层为径向剖分式结构,此方案不仅能显著减小单件硬质合金零件的尺寸,而且能够提高模具的极限承载能力,进而使这种大尺寸压缸可以承受7GPa以上的工作载荷。对于压缸外的预应力保护,可采用多层组合支撑环式预紧或钢丝缠绕式预紧,其中缠绕式预紧结构更加合理,可以显著减小模具的总尺寸,并降低模具的制造成本和装配难度。
[Abstract]:With the rapid development of modern science and technology, ultra-high pressure equipment widely used in industrial production and scientific research plays an increasingly important role in high-voltage technology. As the core part of ultra-high pressure equipment, the ultra-high pressure mould always has two development demands, on the one hand, the higher pressure can be obtained as far as possible, and on the other hand, it provides as large cavity volume as possible. The enlargement of the mould is the inevitable requirement of the development of modern ultra-high pressure equipment, because it not only shows that it can improve the yield of the synthetic product, but also can improve the quality of the product. However, in the prior art, the size of the parts of the large-sized hard alloy parts increases exponentially, which results in a high cost of a large-sized hard alloy part, a large manufacturing difficulty, a high quality, and a reduction in the ultimate bearing capacity of the mold. Based on this, the ultra-high pressure die with split pressure cylinder is studied, which not only can reduce the stress of the cylinder structure, but also can reduce the size of the part. Under the premise of ensuring the carrying capacity of the mould, the volume of the cavity is enlarged, and the structure is easy to be enlarged and applied. The split structure has two sections: radial split and tangential split. In terms of ultimate load-carrying capacity, the tangential split-type pressure cylinder has a significant advantage. In this paper, a series of research and optimization design is carried out on the split-section ultra-high pressure mould by numerical simulation, which provides theoretical basis and scientific reference for the design and manufacture of split high-pressure mould and practical application. The main contents and conclusions of this paper are as follows: 1. The design principle of the ultra-high pressure die with split-type pressure cylinder is discussed, which can eliminate the defect that the circumferential tensile stress of the traditional annual wheel die is too large, and can reduce the size of the pressure cylinder part. There are two forms: the radial split section is the section plane section along the radius direction of the pressure cylinder; the tangential section is a completely new section form, and the section plane is perpendicular to the radius direction of the pressure cylinder and is split along the tangential direction of the inner cavity. The relevant theoretical analysis of split mould is carried out, the calculation method and design principle of relevant parameters are deduced, and the theoretical basis is provided for the preliminary design of mould. The finite element modeling of ultra-high pressure mould adopts numerical simulation software to model the ultra-high pressure mould. The stress distribution of the die in two cases of pre-tightening and working condition is compared by numerical simulation. The stress distribution characteristics of the pressure cylinder and the supporting ring are analyzed. The results show that the circumferential tensile stress on the cylinder wall is the main cause of die failure. Comparison and analysis of split structure and annual wheel structure analysis and comparison year wheel pressure cylinder, radial split pressure cylinder and tangential split type pressure cylinder are analyzed. The results show that under the same load, the stress of the three structures decreases sequentially; the radial split structure can significantly reduce the circumferential tensile stress; the tangential split structure can completely eliminate tensile stress and generate circumferential compressive stress; Due to the mutual squeezing and friction action between adjacent cutting blocks, the interaction can self-coordinate and uniformly distribute the stress distribution of the pressure cylinder, so that the performance of the material is fully utilized, and the bearing capacity of the pressure cylinder is improved. In addition, under the working condition, the tangential split-type pressure cylinder is the stress state of three-way compression, which is very beneficial to the cemented carbide material. The experimental results show that the nominal pressure in the cavity of three structures is 5. 75GPa, 7. 27GPa, 8. 39GPa, respectively. The numerical simulation results show that, with the increase of the number of split blocks, the stress of the pressure cylinder does not change significantly with the increase of the number of split blocks, and the force of the cylinder is correspondingly reduced for the tangential split structure. The stress distribution tends to be uniform and the ultimate bearing capacity increases. The selection principle of dividing block number of pressure cylinder is discussed from a plurality of angles, which can be summarized as follows: the size of the pressure cylinder is smaller than that of the small block number, the size of the pressure cylinder is larger, the number of sectional blocks is selected, and when the outer contour of the split block is close to the regular shape, the pressure cylinder has more reasonable stress, The stress distribution is more uniform, bearing load, resistance to impact, and the ability to prevent brittle fracture is stronger. Optimum design of the key geometric parameters of the tangential split-type pressure cylinder is designed by the structural optimization design of the tangential split-type pressure cylinder. The influence of the high-diameter ratio, the thickness ratio, the height ratio and the half-cone angle on the force of the structure are analyzed and compared, and the optimum optimum values of the parameters under certain conditions are obtained. The influence of friction coefficient on the working of pressure cylinder is discussed. The results show that there is a reasonable interval in the interaction between adjacent sections. Based on the development trend of the large-cavity ultra-high pressure die based on the large-scale expansion of ultra-high pressure equipment, the ultra-high pressure die with large sample cavity volume can be designed under the condition that the die can withstand higher extreme pressure. the size of the hard alloy part is reduced by adopting the split type pressure cylinder structure, the manufacturing difficulty and the cost are reduced, the material quality is improved, and the stress of the pressure cylinder structure is improved. The diameter of the sample chamber is? 80mm, the hard alloy pressure cylinder adopts a two-layer split structure, the inner layer is a tangential split structure, the outer layer is a radial split structure, the scheme can not only remarkably reduce the size of the single-piece hard alloy part, but also can improve the ultimate bearing capacity of the mould, so that the large-sized pressure cylinder can bear the working load of more than 7GPa. The multi-layer combined support ring type pre-tightening or steel wire winding type pre-tightening can be adopted for the pre-stress protection outside the pressure cylinder, wherein the winding type pre-tightening structure is more reasonable, the overall size of the die can be obviously reduced, and the manufacturing cost and the assembly difficulty of the die are reduced.
【学位授予单位】:吉林大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:TQ051.3;TG76

【相似文献】

相关期刊论文 前10条

1 蔡学熙;剖分式天轮受力分析[J];化工矿山技术;1986年03期

2 蒋黎安;手扶拖拉机剖分式箱体的加工[J];拖拉机;1986年02期

3 阎德琦 ,梁应彪;剖分式受拉连杆的应力、应变分析(有限单元法)[J];太原重型机械学院学报;1987年S1期

4 金元林;;剖分式大齿轮定位销孔的加工[J];机械工艺师;1992年07期

5 韩光钦;剖分式卷扬机的正确安装[J];矿山机械;1995年11期

6 钟昌彬;;剖分式圆柱轴承损伤因素分析与控制[J];冶金丛刊;2009年02期

7 杨钟胜;;大型机床剖分式动压轴承的修理工艺及常见故障[J];机械制造;1989年10期

8 赵朋;鬲雪艾;胡娟;刘永新;;剖分式薄壁铜套的加工方法[J];金属加工(冷加工);2009年11期

9 张园;杨启明;;一种新型釜用剖分式机械密封装置设计[J];化工机械;2009年02期

10 肖辉进;剖分式缸体加工工艺性分析[J];机械工人.冷加工;2003年12期

相关会议论文 前1条

1 陈传兵;刘业新;;剖分式油封在生产中的应用[A];2007年中小高炉炼铁学术年会论文集[C];2007年

相关博士学位论文 前2条

1 杨云飞;压缸切向剖分式超高压模具的研究[D];吉林大学;2016年

2 刘志卫;多层交错剖分式超高压模具设计及其数值模拟[D];吉林大学;2014年

相关硕士学位论文 前3条

1 陶凯;螺旋槽端面剖分式机械密封性能研究[D];南京林业大学;2014年

2 陈碧凤;反应釜用剖分式机械密封机理分析及设计[D];西南石油大学;2007年

3 常宝华;ZP495型转盘锥齿圈剖分式联接设计与分析[D];兰州理工大学;2014年



本文编号:2254714

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/huaxuehuagong/2254714.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户14afb***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com