放电等离子烧结氧化锆陶瓷的制备及性能研究
发布时间:2018-11-26 08:56
【摘要】:本文针对传统无压烧结氧化锆陶瓷的烧结动力小,致密度低、显微结构不均匀以及生产周期长等问题,主要研究了:SPS烧结氧化锆陶瓷断裂韧性的表征方法;采用正交试验优化SPS烧结氧化锆陶瓷的工艺,研究氧化铝的含量对氧化锆陶瓷组织和性能的影响;分析对比SPS烧结氧化锆陶瓷、氧化铝/氧化锆复合陶瓷以及传统无压烧结氧化锆陶瓷材料的显微结构和性能;主要结论如下: 1、压痕裂纹系统的类型与压痕载荷有关,放电等离子烧结氧化锆陶瓷在压痕压制载荷为10kg,保压时间为15s的条件下所得到的裂纹系统均为巴氏裂纹。Marshall公式所测的断裂韧性值偏大;Niihara公式和Shetty公式的值比较稳定,但未考虑致密度的影响;所以对于SPS烧结氧化锆陶瓷的巴氏裂纹系统,本文压痕法所选的公式为Laugier公式,即:KIc0.015(d/l)1/2(E/H)2/3(P/c3/2)。 2、采用放电等离子烧结技术制备氧化锆陶瓷的过程中,影响其性能的主要因素是烧结温度,其次是烧结时间;最佳的SPS工艺参数是1400℃×5min×15MPa。经最佳工艺烧结后的氧化锆陶瓷的组织为均一的四方相氧化锆,致密度为96%、显微硬度1332HV、断裂韧性为5.18MPa·m0.5。氧化锆陶瓷的显微结构和性能与其所选用的烧结方法密切相关,无压烧结氧化锆陶瓷的致密度为91%,显微硬度为1217HV,断裂韧性为7.57MPa·m0.5,与SPS试样相比,无压烧结氧化锆陶瓷内部存在较多的气孔,使其致密度和硬度低于SPS试样,而其断裂韧性高于SPS试样。 3、随着氧化铝含量的增加,氧化铝/氧化锆复合陶瓷的硬度升高、密度和断裂韧性先升后降,在15%时达到峰值。当氧化铝含量达到20%时,复合陶瓷中的氧化铝晶粒会异常长大,断裂韧性急剧下降。15%Al2O3/ZrO2复合陶瓷的组织为t相氧化锆基体中均匀分布着α相氧化铝,其致密度为97.3%、显微硬度为1433HV、断裂韧性为4.710MPa·m0.5。 4、在室温干摩擦条件下,氮化硅磨球与SPS烧结的氧化锆陶瓷、氧化铝/氧化锆复合陶瓷和传统烧结的氧化锆陶瓷的摩擦系数分别为0.71、0.65和0.72,其磨损机理均为磨粒磨损;但是SPS烧结氧化锆陶瓷的磨屑大且多,SPS烧结氧化铝/氧化锆复合陶瓷的磨屑小而少,,传统无压烧结的氧化锆陶瓷介于两者之间。SPS烧结氧化锆陶瓷、氧化铝/氧化锆复合陶瓷和传统无压烧结氧化锆陶瓷的磨损率分别为:1.15×10-3mm3/(m·N),4.85×10-5mm3/(m·N)和6×10-4mm3/(m·N)。
[Abstract]:Aiming at the problems of low sintering power, low density, uneven microstructure and long production cycle of traditional pressureless sintered zirconia ceramics, this paper mainly studied the characterization method of fracture toughness of SPS sintered zirconia ceramics; The SPS sintering process of zirconia ceramics was optimized by orthogonal test, and the effect of alumina content on the microstructure and properties of Zirconia ceramics was studied. The microstructure and properties of SPS sintered zirconia ceramics, alumina / zirconia composite ceramics and traditional pressureless sintered zirconia ceramics were analyzed and compared. The main conclusions are as follows: 1. The type of indentation crack system is related to indentation load. When the pressure holding time is 15 s, the crack systems obtained are all pasteurian cracks. The fracture toughness measured by Marshall formula is larger. The values of Niihara formula and Shetty formula are stable, but the effect of density is not considered. So for the SPS sintered zirconia ceramics, the formula chosen by indentation method is Laugier formula, that is, KIc0.015 (d / l) 1 / 2 (E / H) 2 / 3 (P/c3/2). 2. In the process of preparing zirconia ceramics by spark plasma sintering, the main factors affecting its properties are sintering temperature, followed by sintering time, and the best SPS process parameter is 1400 鈩
本文编号:2358051
[Abstract]:Aiming at the problems of low sintering power, low density, uneven microstructure and long production cycle of traditional pressureless sintered zirconia ceramics, this paper mainly studied the characterization method of fracture toughness of SPS sintered zirconia ceramics; The SPS sintering process of zirconia ceramics was optimized by orthogonal test, and the effect of alumina content on the microstructure and properties of Zirconia ceramics was studied. The microstructure and properties of SPS sintered zirconia ceramics, alumina / zirconia composite ceramics and traditional pressureless sintered zirconia ceramics were analyzed and compared. The main conclusions are as follows: 1. The type of indentation crack system is related to indentation load. When the pressure holding time is 15 s, the crack systems obtained are all pasteurian cracks. The fracture toughness measured by Marshall formula is larger. The values of Niihara formula and Shetty formula are stable, but the effect of density is not considered. So for the SPS sintered zirconia ceramics, the formula chosen by indentation method is Laugier formula, that is, KIc0.015 (d / l) 1 / 2 (E / H) 2 / 3 (P/c3/2). 2. In the process of preparing zirconia ceramics by spark plasma sintering, the main factors affecting its properties are sintering temperature, followed by sintering time, and the best SPS process parameter is 1400 鈩
本文编号:2358051
本文链接:https://www.wllwen.com/kejilunwen/huaxuehuagong/2358051.html