当前位置:主页 > 科技论文 > 化学工程论文 >

枝状火炬管网压降计算的建模与仿真

发布时间:2018-12-17 00:55
【摘要】:火炬管网用于收集石化工艺装置在开、停车及事故工况下排放的多余物料,在石化工业的安全生产中扮演重要角色。在工艺装置的改造或扩建过程中,火炬管网的泄放点个数和泄放量发生改变,可能会导致安全泄放装置的出口压力超过其最大允许背压,火炬气无法排入管网。针对上述问题,以枝状结构的火炬管网为研究对象,开展火炬管网压降计算的研究。本文的主要工作及成果如下:(1)根据火炬系统的设计标准的要求,在安全泄放装置的背压限制条件和管道内气体流速限制条件下,分别采用Romeo方程和Drwnchuk-Purvis-Robinson方程,对API 521标准中气体排放管道压降计算公式的摩擦阻力系数和气体压缩因子计算方法进行改进。将改进公式应用于火炬管道的压降计算,通过与其它管道压降计算公式的案例分析对比,结果表明在一定管长范围内,各计算结果几乎完全吻合。这证明在保证计算效率的前提下,所提出的火炬管道压降计算方法合理可用。(2)在对枝状火炬管网进行抽象描述的前提下,利用关联矩阵建立了管网拓扑模型;将其与上述火炬管道压降公式联合,最终实现了对火炬管网压降的求解。通过与其它管网软件进行案例分析对比,结果表明计算误差在5%以内。(3)为提高计算的精度和稳定性,采用Crank-Nicolson隐式差分格式构造气体管道瞬态模型的差分方程,建立了适用于火炬管道入口压力动态分析的瞬态流动模型。通过与管网瞬态模拟软件Pipeline Studio(PLS)进行案例分析对比,结果表明在管道压力较大或者管道长度较短的条件下,两者计算结果吻合度较高,因此证明所建管道瞬态模型在一定范围内合理可用。(4)在火炬管道瞬态流动模型的基础上,添加管网内部节点处的流量及压力边界条件,建立了火炬管网瞬态流动模型。通过与PLS软件进行案例分析对比,发现该模型的计算结果与PLS仿真结果有一定的偏差,但两者计算结果的总体变化趋势基本一致且相对误差基本保持在可接受范围以内。
[Abstract]:The torch pipe network is used to collect the excess materials discharged by petrochemical process equipment under open, stop and accident conditions, which plays an important role in the safety production of petrochemical industry. In the process of revamping or extending the process equipment, the number and quantity of the discharge points of the torch pipe network will change, which may lead to the outlet pressure of the safe discharge device exceeding its maximum allowable back pressure, and the flare gas can not be discharged into the pipe network. Aiming at the above problems, the study on the calculation of the pressure drop of the torch pipe network is carried out with the branch structure of the torch pipe network as the research object. The main work and results are as follows: (1) according to the requirements of the design standard of the torch system, the Romeo equation and the Drwnchuk-Purvis-Robinson equation are adopted under the condition of the back pressure limitation of the safe discharge device and the gas velocity limit in the pipeline, respectively. The calculation method of friction resistance coefficient and gas compression factor of pressure drop formula of gas discharge pipe in API 521 standard is improved. The improved formula is applied to the calculation of the pressure drop of the torch pipeline. The results show that the calculated results are almost consistent with each other in a certain range of pipe length through the analysis and comparison with the other calculation formulas of the pressure drop of the torch pipeline. This proves that the proposed calculation method of flare pipeline pressure drop can be reasonably used on the premise of ensuring the calculation efficiency. (2) based on the abstract description of the branch torch pipe network, the topological model of the pipe network is established by using the correlation matrix; Combined with the above formula, the solution of the pressure drop of the torch pipe network is realized. The results show that the calculation error is less than 5%. (3) in order to improve the accuracy and stability of the calculation, the Crank-Nicolson implicit difference scheme is used to construct the difference equation of the gas pipeline transient model. A transient flow model suitable for the dynamic analysis of inlet pressure of torch pipeline is established. Through the case analysis and comparison with the transient simulation software Pipeline Studio (PLS) of pipe network, the results show that under the condition of high pressure or short length of pipeline, the calculated results are in good agreement with each other. Therefore, it is proved that the established transient model can be reasonably used in a certain range. (4) on the basis of the transient flow model of the torch pipeline, the transient flow model of the torch pipeline network is established by adding the flow and pressure boundary conditions at the internal nodes of the pipe network. By comparing with the PLS software, it is found that the calculation results of the model are different from those of the PLS simulation results, but the overall variation trend of the two results is basically the same and the relative error is kept within the acceptable range.
【学位授予单位】:浙江工业大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TQ052.7

【共引文献】

相关期刊论文 前5条

1 王卫琳;高永和;赖建波;张宝庆;李磊祚;蒋浩;;天然气管道截断阀爆管检测系统压降速率设定[J];煤气与热力;2013年07期

2 孙少辰;毕明树;刘刚;刘铎;;阻火器性能测试方法试验性研究[J];化工学报;2014年S1期

3 王丽;;一维等温欧拉方程组的Delta激波解[J];上海电机学院学报;2014年02期

4 赵晔;;火炬系统安全隐患分析与整改措施[J];安全、健康和环境;2014年05期

5 亓波;;高炉炉顶压力控制系统特殊故障的诊断研究[J];机械工程与自动化;2015年03期

相关会议论文 前1条

1 高兰周;;燃气管道瞬态仿真的研究与应用[A];2011年福建省暖通空调制冷学术年会论文资料集[C];2011年

相关博士学位论文 前1条

1 刘佳洁;深层致密砂岩储层气体钻井地层—井筒耦合全瞬态流动规律研究[D];西南石油大学;2014年

相关硕士学位论文 前7条

1 黄明;枝状高压天然气管网动态分析及软件开发[D];华中科技大学;2013年

2 孟少得;TRT紧急停机顶压控制系统研究与应用[D];东北大学;2011年

3 周波;城镇高压管网动态模拟及失效分析研究[D];北京建筑大学;2014年

4 王玮;复杂长管路阻塞特性的评估方法与检测技术[D];南京航空航天大学;2014年

5 柴春青;TRT最佳启动过程研究[D];东北大学;2011年

6 唐健;燃气轮机天然气系统动态仿真[D];上海交通大学;2014年

7 林晓斌;埋地天然气管道泄漏过程天然气在土壤中扩散的数值模拟研究[D];北京化工大学;2014年



本文编号:2383350

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/huaxuehuagong/2383350.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户f316a***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com