纳米级炭黑协同催化聚烯烃制备碳纳米管及其网状结构的研究
[Abstract]:The conversion of cheap plastics to advanced carbon nanomaterials can effectively reduce the preparation cost and provide an environmental protection approach for the treatment of waste plastics. However, waste plastics are usually mixtures of polyolefin, but the single metal catalysts used at present are not universal and can only be used in the catalysis of one kind of plastics. It was found that a trimetallic catalyst (Ni-Mo-Mg) and carbon black could efficiently catalyze the preparation of carbon nanotubes (CNTs) from different polyolefins and their reticular structure by using a trimetal catalyst (Ni-Mo-Mg) and carbon black. In situ Ni-Mo-Mg catalyst catalyzed (PP), of polypropylene. Carbon nanotubes were synthesized from polyethylene (PE), polystyrene (PS) and its mixture. The highest yields of carbon nanotubes were 26.24% 28.36% and 31.66%, respectively. With the addition of a synergistic additive, carbon black (CB), the maximum yield of carbon nanotubes can be increased to 53.56% and 59.83%, respectively. Scanning electron microscope (SEM), (SEM), transmission electron microscope (TEM), high resolution transmission electron microscope (TEM), (HRTEM), X ray diffractometer (XRD) and Raman spectrum (Raman) were used to analyze the morphology and structure of the carbon nanotubes. The graphitization degree was characterized and analyzed. The results show that the addition of carbon black can improve the morphology and graphitization of carbon nanotubes. Based on the experimental results, the high efficiency catalytic mechanism of catalyst Ni-Mo-Mg and the theory of synergistic action with carbon black were discussed in this paper. A carbon nanotube network structure was also synthesized by pyrolysis of polypropylene / Ni-Mo-Mg/ carbon black blends. Scanning Electron microscope (SEM) (SEM), Transmission Electron microscope (TEM) used to observe the Microstructure of carbon Nanotubes (CNTs) and X-ray diffractometer (XRD), Raman Spectroscopy (Raman), The graphitization degree, thermal stability and surface composition were measured by thermogravimetric analyzer (TGA) and X-ray photoelectron spectroscopy (XPS). The results show that the addition of CB-1 can not only increase the yield of CNTs, but also make them interconnect with each other to form a new network structure. The increasing yield of carbon nanotubes is related to the ability of carbon black to capture free radicals, and the ability to connect carbon nanotubes depends on the size of the carbon nanotubes.
【学位授予单位】:东北林业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TB383.1;TQ127.11
【相似文献】
相关博士学位论文 前10条
1 杨明;碳纳米管负载过渡金属及其催化氧化性能研究[D];南京大学;2014年
2 吴改红;碳纳米管胶囊/聚乳酸复合纤维的制备及结构性能研究[D];东华大学;2017年
3 徐凯;电弧等离子体法制备石油残渣基碳纳米管及其应用[D];中国石油大学(北京);2016年
4 李长金;微纳层叠挤出设备研发及聚丙烯/碳纳米管复合材料结构与性能的研究[D];北京化工大学;2017年
5 易义武;石墨烯/碳纳米管复合粉体的制备及应用研究[D];南昌大学;2017年
6 田维亮;蛭石复合功能材料设计合成与性能研究[D];北京化工大学;2017年
7 张书品;碳纳米管(石墨烯)/锰锌铁氧体复合材料的温控效应和热电性能研究[D];山东大学;2017年
8 翟通;聚醚醚酮及其碳纳米管复合材料表面金属化的研究[D];天津大学;2016年
9 刘金涛;基于纳米材料的活性粉末混凝土及其基本力学性能研究[D];浙江大学;2016年
10 任烨;咪唑类离子液体的负载对聚合物碳纳米管复合材料性能的影响[D];北京化工大学;2016年
相关硕士学位论文 前10条
1 崔瑾仙;纳米级炭黑协同催化聚烯烃制备碳纳米管及其网状结构的研究[D];东北林业大学;2017年
2 张文斌;掺氮碳纳米管的制备及其催化硝基化合物加氢性能研究[D];湘潭大学;2017年
3 崔瑞敏;碳纳米管/含氮化合物的球磨预处理及其对环氧树脂性能的影响[D];北京化工大学;2017年
4 代利峰;掺杂对碳纳米管导电性影响的理论研究[D];华北理工大学;2017年
5 刁加加;掺杂对碳纳米管导电性影响的实验研究[D];华北理工大学;2017年
6 徐元;碳纳米管的改性修饰及应用研究[D];哈尔滨工程大学;2014年
7 崔博媈;碳纳米管网络结构导热特性的分子动力学模拟研究[D];华北电力大学;2017年
8 张粲;碳纳米管复合材料发热器件的基本性能研究[D];南京航空航天大学;2017年
9 丁亚飞;弱氧化辅助的碳纳米管阵列的制备工艺研究[D];南京航空航天大学;2017年
10 张瀚;碳纳米管负载钯和钌纳米颗粒的制备及表征[D];海南大学;2017年
,本文编号:2397504
本文链接:https://www.wllwen.com/kejilunwen/huaxuehuagong/2397504.html