利用木糖同时产电和产氢的微生物燃料电池性能及机制研究
发布时间:2021-04-15 06:17
化石能源的大量使用导致了严重的环境问题。无污染的可再生能源如太阳能、风能、生物质能的使用有望缓解能源与环境的矛盾。其中,生物质能源被认为是最具潜力的可再生能源之一。微生物燃料电池(MFC)是一种可以将有机物直接高效转化为电能的新技术。MFC能够将生物质直接转化为电能,应用潜力巨大。但是,目前MFC转化生物质效率低下,主要限制性因素之一是MFC难以高效将生物质来源木糖高效转化为能源产品。针对这一关键性限制因素,本研究通过菌株筛选,获得了一株能够以木糖为唯一底物产电的新型产电菌,并建立了高效木糖MFC。进一步,发现该MFC利用木糖产电的同时能够产氢,实现了木糖同时转化为生物氢和生物电,为木糖的高效能源化转化提供了新的路径。主要研究内容及结果如下:筛选获得了以木糖为唯一电子供体的新型产电微生物。然后,分离并鉴定了一种新的产电酵母菌株(Cystobasidium slooffiae菌株JSUX1),该菌株可以通过使用木糖作为唯一碳和能源在MFC中发电。该菌株能够产生显著的电流密度,并具有快速代谢木糖的能力。进一步研究发现,该菌株在厌氧培养条件下或在MFC中可以利用木糖产生生物氢气。因此,利用此...
【文章来源】:江苏大学江苏省
【文章页数】:135 页
【学位级别】:博士
【文章目录】:
Acknowledgements
摘要
Abstract
List of Abbreviations
List of Symbols
Chapter1:General introduction
1.1 Renewable energy
1.2 Overview of microbial fuel cell(MFC)
1.3 MFC applications and advantages
1.3.1 Wastewater treatment
1.3.2 Biological production of hydrogen
1.3.3 Batteries for biosensing
1.4 Biological aspect of MFC
1.4.1 Electroactive microorganisms(EAMs)
1.4.2 Biofilm formation
1.4.3 Electron transfer mechanism
1.5 Physical aspect of MFC
1.5.1 Substrates used for MFC
1.5.1.1 Xylose a derived by-product from biomass
1.5.1.2 Organic/Substrate loading rate(OLR)
1.5.2 Temperature
1.5.3 pH
1.6 MFC configuration and materials
1.6.1 Reactor configuration
1.6.2 Separator
1.6.3 External Resistance
1.6.4 Electrode materials and modification
1.7 Hypotheses
1.8 Objective and thesis overview
Chapter2:Strain screening and acclimation for xylose-fueled MFC
2.1 Introduction
2.2 Materials and methods
2.2.1 Materials
2.2.2 MFC system operation
2.2.3 Strain isolation technique and growth conditions
2.2.4 Strain characterization and growth rate
2.2.4.1 SEM analysis
2.2.5 DNA extraction and phylogenetic analysis
2.3 Results and discussions
2.3.1 Strain identification and characterization
2.3.2 Bioelectricity generation from MFC with strain JSUX1
2.4 Conclusion
Chapter3:Simultaneous biohydrogen and bioelectricity production from xylose in MFC by newly isolated yeast of Cystobasidium slooffiae JSUX
3.1 Introduction
3.2 Materials and methods
3.2.1 Acclimation strategy
3.2.2 MFC configuration
3.2.3 Electrochemical analysis
3.2.3.1 Current measurement
3.2.3.2 Polarization curve
3.2.3.3 Cyclic voltammetry(CV)
3.2.4 Analytical methods
3.2.4.1 High-performance liquid chromatography(HPLC)analysis
3.2.4.2 Fluorescence spectroscopy
3.2.4.3 Biosensing analysis
3.2.4.4 Biohydrogen detection
3.2.4.5 SEM analysis of electrode
3.2.4.6 Assessment of cell viability
3.3 Results and discussions
3.3.1 Strain Acclimation
3.3.2 MFC performance
3.3.3 Underlying extracellular electron transfer mechanism for JSUX1
3.3.4 Enhanced bioelectricity production with exogenous addition of riboflavin
3.3.5 Xylose metabolism in MFC
3.3.6 Biofilm stability and viability in MFC
3.4 Conclusion
Chapter4:Polyaniline modification of electrodes for performance enhancement of xylose-fueled MFC
4.1.Introduction
4.2.Materials and methods
4.2.1 Precursor deposition of Polyaniline(PANI)
4.2.2 MFC set-up and operation
4.2.3 Electrochemical measurement
4.2.4 Analytical techniques
4.3.Results and discussions
4.3.1 PANI modification and characterization
4.3.2 Enhanced MFC performance by PANI modified electrode
4.3.3 Electrochemical analysis
4.4.Conclusion
Chapter5:In-situ assembly of3D graphene hydrogel electrode for performance enhancement of xylose-fueled MFC
5.1 Introduction
5.2 Materials and methods
5.2.1 Fabrication of3D reduced graphene oxide electrodes
5.2.2 Characterization
5.2.3 Electrochemical analysis
5.3 Results and discussions
5.3.1 In-situ assembly of3D-rGO hydrogel electrode and characterization
5.3.2 Enhanced MFC performance by graphene hydrogel electrode
5.3.3 Electrochemical analysis
5.4 Conclusion
Chapter6:General conclusions and perspectives
6.1 Summaries
6.2 Novelties
6.3 Future works
Bibliography
Appendices
Publications
本文编号:3138809
【文章来源】:江苏大学江苏省
【文章页数】:135 页
【学位级别】:博士
【文章目录】:
Acknowledgements
摘要
Abstract
List of Abbreviations
List of Symbols
Chapter1:General introduction
1.1 Renewable energy
1.2 Overview of microbial fuel cell(MFC)
1.3 MFC applications and advantages
1.3.1 Wastewater treatment
1.3.2 Biological production of hydrogen
1.3.3 Batteries for biosensing
1.4 Biological aspect of MFC
1.4.1 Electroactive microorganisms(EAMs)
1.4.2 Biofilm formation
1.4.3 Electron transfer mechanism
1.5 Physical aspect of MFC
1.5.1 Substrates used for MFC
1.5.1.1 Xylose a derived by-product from biomass
1.5.1.2 Organic/Substrate loading rate(OLR)
1.5.2 Temperature
1.5.3 pH
1.6 MFC configuration and materials
1.6.1 Reactor configuration
1.6.2 Separator
1.6.3 External Resistance
1.6.4 Electrode materials and modification
1.7 Hypotheses
1.8 Objective and thesis overview
Chapter2:Strain screening and acclimation for xylose-fueled MFC
2.1 Introduction
2.2 Materials and methods
2.2.1 Materials
2.2.2 MFC system operation
2.2.3 Strain isolation technique and growth conditions
2.2.4 Strain characterization and growth rate
2.2.4.1 SEM analysis
2.2.5 DNA extraction and phylogenetic analysis
2.3 Results and discussions
2.3.1 Strain identification and characterization
2.3.2 Bioelectricity generation from MFC with strain JSUX1
2.4 Conclusion
Chapter3:Simultaneous biohydrogen and bioelectricity production from xylose in MFC by newly isolated yeast of Cystobasidium slooffiae JSUX
3.1 Introduction
3.2 Materials and methods
3.2.1 Acclimation strategy
3.2.2 MFC configuration
3.2.3 Electrochemical analysis
3.2.3.1 Current measurement
3.2.3.2 Polarization curve
3.2.3.3 Cyclic voltammetry(CV)
3.2.4 Analytical methods
3.2.4.1 High-performance liquid chromatography(HPLC)analysis
3.2.4.2 Fluorescence spectroscopy
3.2.4.3 Biosensing analysis
3.2.4.4 Biohydrogen detection
3.2.4.5 SEM analysis of electrode
3.2.4.6 Assessment of cell viability
3.3 Results and discussions
3.3.1 Strain Acclimation
3.3.2 MFC performance
3.3.3 Underlying extracellular electron transfer mechanism for JSUX1
3.3.4 Enhanced bioelectricity production with exogenous addition of riboflavin
3.3.5 Xylose metabolism in MFC
3.3.6 Biofilm stability and viability in MFC
3.4 Conclusion
Chapter4:Polyaniline modification of electrodes for performance enhancement of xylose-fueled MFC
4.1.Introduction
4.2.Materials and methods
4.2.1 Precursor deposition of Polyaniline(PANI)
4.2.2 MFC set-up and operation
4.2.3 Electrochemical measurement
4.2.4 Analytical techniques
4.3.Results and discussions
4.3.1 PANI modification and characterization
4.3.2 Enhanced MFC performance by PANI modified electrode
4.3.3 Electrochemical analysis
4.4.Conclusion
Chapter5:In-situ assembly of3D graphene hydrogel electrode for performance enhancement of xylose-fueled MFC
5.1 Introduction
5.2 Materials and methods
5.2.1 Fabrication of3D reduced graphene oxide electrodes
5.2.2 Characterization
5.2.3 Electrochemical analysis
5.3 Results and discussions
5.3.1 In-situ assembly of3D-rGO hydrogel electrode and characterization
5.3.2 Enhanced MFC performance by graphene hydrogel electrode
5.3.3 Electrochemical analysis
5.4 Conclusion
Chapter6:General conclusions and perspectives
6.1 Summaries
6.2 Novelties
6.3 Future works
Bibliography
Appendices
Publications
本文编号:3138809
本文链接:https://www.wllwen.com/kejilunwen/huaxuehuagong/3138809.html