利用热力学方法研究甘氨酸和氯化镁—乙醇加合物结晶动力学
发布时间:2021-05-09 00:08
甘氨酸是一个重要的有机组分,广泛用于食品、制药、化学和农业工业中。生物化工中的分离方法包括分步沉淀、结晶和离子交换等,分离成本占总制备成本的50%以上。为了开发更高效的分离方法,在不同介质、温度和浓度中,进行热力学性质研究是非常有必要的。晶体产品的晶型控制在制药方面也十分关键,因为错误晶型的采用将会导致危险。因此,我们对甘氨酸成核、生长以及不同溶剂介质中的晶型转变可能为其多晶型的筛选提供基础。本论文的研究成果对理解其他氨基酸的多晶型也有重要的意义。以MgCl2为载体的多相Ziegler-Natta催化剂是用于聚丙烯的聚合反应的。MgCl2首先利用醇类处理(多用乙醇),然后注入TiClU。前驱体中MgCl2/EtOH的比例的决定了得到的聚合体的活度和等规度。MgCl2·nEtOH的结晶动力学有助于更深入理解从而控制结晶加合物的结构。首先,我们采用动态法测定了甘氨酸(α晶型)在不同溶液中的溶解度。在电解质溶液中,测定了甘氨酸在温度为283.15-333.15K,MgCl2浓度为0.5到3.5mol·kg-1时在MgCl2-H2O溶液中的溶解度,以及MgCl2浓度为0.5、1.0和1.520...
【文章来源】:中国科学院大学(中国科学院过程工程研究所)北京市
【文章页数】:158 页
【学位级别】:博士
【文章目录】:
摘要
Abstract
1 Introduction
1.1 Background
1.2 Measurement and Modeling of Solubility
1.3 Scope of this Work
1.4 Organization of the Thesis
1.5 Final Remarks
2 Literature Survey
2.1 Introduction
2.2 Solubilities of Glycine in Different Media
2.2.1 Glycine/water
2.2.2 Glycine/electrolyte/water
2.2.3 Glycine/acid-base/water
2.2.4 Glycine/alcohol/water
2.3 Previous Studies on Modeling Glycine Solubilities
2.3.1 Glycine/electrolyte/water
2.3.2 Glycine/acid-base/water
2.3.3 Glycine/alcohol/water
2.4 Theoretical Modeling
2.4.1 Bromley Model
2.4.2 Pitzer Model
2.4.3 Bromley-Zemaitis Model
2.4.4 ElecNRTL Model
2.4.5 The Extended UNIQUAC Model
2.4.6 Mixed Solvent Electrolyte (MSE) Model
2.4.7 Perturbation Theory
2.4.8 PC-SAFT
2.5 Introduction to OLI Software
2.6 Glycine
2.7 Polymorphism of Glycine
2.8 Crystallization
2.9 Supersaturation (Detailed in Section 6.1)
2.10 Driving Force for Crystallization
2.11 Homogeneous Nucleation
2.12 Heterogeneous Nucleation
2.13 Ostwald's Rule of Stages (Ostwald, 1897) (Kinetic control)
2.14 Thermodynamic Consideration (Weber et al.,1998)
2.15 Crystal Growth (Mullin, 2001)
2.15.1 Surface Energy
2.15.2 Adsorption Layer Theories
2.15.3 Diffusion Theories
2.16 Crystallization Kinetics
2.16.1 Nyvlt Approach(Nyvlt, 1983;Nyvlt et al.,1970:Nyvlt, 1968)
2.16.2 Kubota Approach (Kubota, 2008b)
2.16.3 Sangwal Approach(Sangwal,2009b)
2.17 Estimation of Interfacial Tension
3 Solubilities and Modeling of the Glycine in Mixed NaCl-MgCl_2 Solutions atHighly Concentrated Region
3.1 Abstract
3.2 Introduction
3.3 Experimental Section
3.3.1 Chemicals
3.3.2 Experimental Procedure
3.4 Thermodynamic Model
3.4.1 Chemical Equilibria
3.4.2 Equilibrium Constants
3.4.3 Activity Coefficient Model
3.5 Results and Discussion
3.5.1 Solubilities Measurements in the Glycine-MgCl_2-H_2O andGlycine-NaCl-MgCl_2-H_2O Systems
3.5.2 Model Parameterization
3.6 Conclusions
4 Modeling of Glycine Solubility in Aqueous HCl-MgCl_2 System and ItsApplication in Phase Transition of Glycine by Changing Media and Supersaturation
4.1 Abstract
4.2 Introduction
4.3 Experimental Section
4.3.1 Chemicals
4.3.2 Measurement of Solubilities
4.3.3 Polymorph Transformation
4.4 Thermodynamic Modeling Framework
4.4.1 Chemical Equilibrium Relationships
4.4.2 Equilibrium Constants
4.4.3 Activity Coefficient Model
4.5 Results and Discussion
4.5.1 Solubility Determination of Glycine in HCl and HCl-MgCl_2 Aqueous Solutions
4.5.2 Model Parameterization
4.5.3 Supersaturation Calculation
4.6 Polymorph Transformation of Glycine
4.7 Conclusions
5 Solid-Liquid Equilibria for the Glycine-Alcohol-NaCl-H_2O System
5.1 Abstract
5.2 Introduction
5.3 Experimental Section
5.3.1 Chemical Agents
5.3.2 Solubility Determination
5.4 Thermodynamic Modeling
5.4.1 Chemical Equilibrium Relationships
5.4.2 Activity Coefficient Model
5.5 Results and Discussion
5.5.1 Solubility of Glycine in Ethanol and Ethanol-NaCl Aqueous Solutions
5.5.2 Solubility of Glycine in 1-propanol and 1-propanol-NaCl Aqueous Solutions
5.5.3 Solubility of NaCl in alcohol (ethanol/1-propanol)-glycine-H_2O System
5.5.4 Model Parameterization
5.6 Conclusions
6 Crystallization Kinetics of MgCl_2-Ethanol Adduct as a Support for theZiegler-Natta Catalyst with a Thermodynamic Approach
6.1 Abstract
6.2 Introduction
6.3 Experimental Section
6.3.1 Chemicals
6.3.2 Experimental Setup
6.3.3 Measurement of Metastable Zone Width (MSZW)
6.3.4 Measurement of Induction Time
6.3.5 Supersaturation Calculation
6.3.6 Activity Coefficient
6.4 Results and Discussion
6.4.1 Validation of Calculation by OLI Software
6.4.2 Metastable Zone Width (MSZW)
6.4.3 Nyvlt's Approach
6.4.4 Sangwal's Approach
6.4.5 Induction time
6.4.6 Estimation of Interfacial Tension
6.5 Conclusions
7 Conclusions and Recommendations
7.1 Conclusions
7.2 Claims to Originality
7.3 Suggestions for Future Work
Nomenclature
References
Acknowledgement
Curriculum Vitae
本文编号:3176236
【文章来源】:中国科学院大学(中国科学院过程工程研究所)北京市
【文章页数】:158 页
【学位级别】:博士
【文章目录】:
摘要
Abstract
1 Introduction
1.1 Background
1.2 Measurement and Modeling of Solubility
1.3 Scope of this Work
1.4 Organization of the Thesis
1.5 Final Remarks
2 Literature Survey
2.1 Introduction
2.2 Solubilities of Glycine in Different Media
2.2.1 Glycine/water
2.2.2 Glycine/electrolyte/water
2.2.3 Glycine/acid-base/water
2.2.4 Glycine/alcohol/water
2.3 Previous Studies on Modeling Glycine Solubilities
2.3.1 Glycine/electrolyte/water
2.3.2 Glycine/acid-base/water
2.3.3 Glycine/alcohol/water
2.4 Theoretical Modeling
2.4.1 Bromley Model
2.4.2 Pitzer Model
2.4.3 Bromley-Zemaitis Model
2.4.4 ElecNRTL Model
2.4.5 The Extended UNIQUAC Model
2.4.6 Mixed Solvent Electrolyte (MSE) Model
2.4.7 Perturbation Theory
2.4.8 PC-SAFT
2.5 Introduction to OLI Software
2.6 Glycine
2.7 Polymorphism of Glycine
2.8 Crystallization
2.9 Supersaturation (Detailed in Section 6.1)
2.10 Driving Force for Crystallization
2.11 Homogeneous Nucleation
2.12 Heterogeneous Nucleation
2.13 Ostwald's Rule of Stages (Ostwald, 1897) (Kinetic control)
2.14 Thermodynamic Consideration (Weber et al.,1998)
2.15 Crystal Growth (Mullin, 2001)
2.15.1 Surface Energy
2.15.2 Adsorption Layer Theories
2.15.3 Diffusion Theories
2.16 Crystallization Kinetics
2.16.1 Nyvlt Approach(Nyvlt, 1983;Nyvlt et al.,1970:Nyvlt, 1968)
2.16.2 Kubota Approach (Kubota, 2008b)
2.16.3 Sangwal Approach(Sangwal,2009b)
2.17 Estimation of Interfacial Tension
3 Solubilities and Modeling of the Glycine in Mixed NaCl-MgCl_2 Solutions atHighly Concentrated Region
3.1 Abstract
3.2 Introduction
3.3 Experimental Section
3.3.1 Chemicals
3.3.2 Experimental Procedure
3.4 Thermodynamic Model
3.4.1 Chemical Equilibria
3.4.2 Equilibrium Constants
3.4.3 Activity Coefficient Model
3.5 Results and Discussion
3.5.1 Solubilities Measurements in the Glycine-MgCl_2-H_2O andGlycine-NaCl-MgCl_2-H_2O Systems
3.5.2 Model Parameterization
3.6 Conclusions
4 Modeling of Glycine Solubility in Aqueous HCl-MgCl_2 System and ItsApplication in Phase Transition of Glycine by Changing Media and Supersaturation
4.1 Abstract
4.2 Introduction
4.3 Experimental Section
4.3.1 Chemicals
4.3.2 Measurement of Solubilities
4.3.3 Polymorph Transformation
4.4 Thermodynamic Modeling Framework
4.4.1 Chemical Equilibrium Relationships
4.4.2 Equilibrium Constants
4.4.3 Activity Coefficient Model
4.5 Results and Discussion
4.5.1 Solubility Determination of Glycine in HCl and HCl-MgCl_2 Aqueous Solutions
4.5.2 Model Parameterization
4.5.3 Supersaturation Calculation
4.6 Polymorph Transformation of Glycine
4.7 Conclusions
5 Solid-Liquid Equilibria for the Glycine-Alcohol-NaCl-H_2O System
5.1 Abstract
5.2 Introduction
5.3 Experimental Section
5.3.1 Chemical Agents
5.3.2 Solubility Determination
5.4 Thermodynamic Modeling
5.4.1 Chemical Equilibrium Relationships
5.4.2 Activity Coefficient Model
5.5 Results and Discussion
5.5.1 Solubility of Glycine in Ethanol and Ethanol-NaCl Aqueous Solutions
5.5.2 Solubility of Glycine in 1-propanol and 1-propanol-NaCl Aqueous Solutions
5.5.3 Solubility of NaCl in alcohol (ethanol/1-propanol)-glycine-H_2O System
5.5.4 Model Parameterization
5.6 Conclusions
6 Crystallization Kinetics of MgCl_2-Ethanol Adduct as a Support for theZiegler-Natta Catalyst with a Thermodynamic Approach
6.1 Abstract
6.2 Introduction
6.3 Experimental Section
6.3.1 Chemicals
6.3.2 Experimental Setup
6.3.3 Measurement of Metastable Zone Width (MSZW)
6.3.4 Measurement of Induction Time
6.3.5 Supersaturation Calculation
6.3.6 Activity Coefficient
6.4 Results and Discussion
6.4.1 Validation of Calculation by OLI Software
6.4.2 Metastable Zone Width (MSZW)
6.4.3 Nyvlt's Approach
6.4.4 Sangwal's Approach
6.4.5 Induction time
6.4.6 Estimation of Interfacial Tension
6.5 Conclusions
7 Conclusions and Recommendations
7.1 Conclusions
7.2 Claims to Originality
7.3 Suggestions for Future Work
Nomenclature
References
Acknowledgement
Curriculum Vitae
本文编号:3176236
本文链接:https://www.wllwen.com/kejilunwen/huaxuehuagong/3176236.html