具有多级结构的氮掺杂碳MOF材料用于电化学能量转换和存储
发布时间:2023-04-14 20:03
时至今日,探索如何创新地设计和简单地制备出同时具有氧还原反应(ORR)和析氧反应(OER)特性的双功能、低花费的电催化剂,对于诸如燃料电池和金属空气电池等进行可循环能源储存和转移的技术来讲,已成为重中之重。在此论文的第一部分中,我通过一种简单且直接的生长方式,即固相焙烧ZIF-67和尿酸,构建出了一种以氮元素掺杂的碳纳米管中包覆金属Co单质的异质结构(Co-NCNTs)。在此,尿酸(UA)被视为碳纳米管的引发剂:它能够在较低温度下(440℃)发生热分解,进而产生易于通过渗透作用进入ZIF-67多面体中的碳质气氛。该碳质气氛能够为同时原位产生的Co金属纳米粒子提供在升温过程中催化生长N-CNTs的气源。由于纳米催化剂是在表面优先生成的,因此CNTs在随后的生长过程中将会在ZIF-67多面体上由内向外定向生长,直至形成类球状的纳米管簇。此外,尿酸也作为催化剂中石墨结构的诱导剂。最终得到的催化剂,具有典型的蠕虫状CNTs结构,同时也具有以下一些独特的优点:(1)由于一维的CNTs具有典型的石墨结构,因此将会提升催化剂的导电性;(2)Co-NCNTs-700由于具有最大的比表面积和明显的介孔纹...
【文章页数】:109 页
【学位级别】:硕士
【文章目录】:
学位论文数据集
Abstract
摘要
Abbreviations
Chapter 1: Introduction and Literature Review
1.1 Introduction
1.1.1 Problems related fossil energies
1.1.2 Key Role of ORR and OER in clean energy conversion and storage devices
1.1.3 Aims and Objectives
1.2 Literature review
1.2.1 Metal-air batteries and fuel cells
1.2.2 Supercapacitor
1.2.3 Oxygen electrolysis in Zn-air battery
1.3 Role of Metal organic frame work (MOFs) in the oxygen reduction and oxygen evolutionreactions
1.4 Mechanism of oxygen reduction reaction
1.5 Mechanism of oxygen evolution reaction
Chapter 2: Materials and methods
2.1 Materials
2.1.1 Chemical reagents
2.1.2 Materials characterization
2.1.3 Pyrolysis of solid precursors
2.1.4 Preparation of ZIF-67 particles
2.1.5 Synthesis of Co-NCNTs-700
2.1.6 Preparation Co-NCNPs-700
2.1.7 Preparation of ZIF-UA-440
2.1.8 Electrode pre-treatment and preparation of catalyst ink
2.1.9 Preparation of catalyst layer
2.1.10 Preparation of gas diffusion layer
2.2 Synthesis of DSNCs-700
2.2.1 Synthesis of ZIF-67-700
2.2.2 Synthesis of ZIF-67-UA-400
2.2.3 Acid washing
2.2.4 Catalyst ink
2.2.5 Preparation of Catalyst layer for supercapacitor
2.3 Electrochemical tests
2.3.1 Cyclic voltammetry (CV)
2.3.2 Rotating ring disk electrode (RRDE) analysis and Tafel slope
2.3.3 Potential Gap (ΔE)
Chapter 3: In-situ growth of N-CNTs on MOF derived carbon materials as highlyefficient electro catalyst for Oxygen reduction and revolution reaction
3.1 introductions
3.2 Results and Discussio
3.2.1 Structure morphology and the effect of heating temperature on N-CNTs
3.2.2 XRD and RS study of Co-NCNTs-700 and Co-NCNPs-700
3.2.3 Surface functionalities and surface area Analysis
3.2.4 TGA, MS and FT-IR analysis of UA
3.3 The oxygen reduction- evolution reaction activities and ZAB performance of the asprepared materials
3.3.1 The Oxygen reduction-evolution reaction activities
3.3.2 ZAB performance
Chapter 4: MOFs derived hybrid double shell Nanocages carbon materials forefficientOxygen reduction reaction (ORR) and supercapacitor
4.1 Introduction
4.2 Results and discussions
4.2.1 SEM and TEM analysis
4.2.2 XPS and BET analysis
4.2.3 XRD and RS analysis
4.3 ORR activity and Supercapacitor performance
4.3.1 ORR activity
4.3.2 Supercapacitor performance
Chapter 5: Conclusion
References
Acknowledgement
Author's Introduction
Advisor's Introduction
附件
本文编号:3790784
【文章页数】:109 页
【学位级别】:硕士
【文章目录】:
学位论文数据集
Abstract
摘要
Abbreviations
Chapter 1: Introduction and Literature Review
1.1 Introduction
1.1.1 Problems related fossil energies
1.1.2 Key Role of ORR and OER in clean energy conversion and storage devices
1.1.3 Aims and Objectives
1.2 Literature review
1.2.1 Metal-air batteries and fuel cells
1.2.2 Supercapacitor
1.2.3 Oxygen electrolysis in Zn-air battery
1.3 Role of Metal organic frame work (MOFs) in the oxygen reduction and oxygen evolutionreactions
1.4 Mechanism of oxygen reduction reaction
1.5 Mechanism of oxygen evolution reaction
Chapter 2: Materials and methods
2.1 Materials
2.1.1 Chemical reagents
2.1.2 Materials characterization
2.1.3 Pyrolysis of solid precursors
2.1.4 Preparation of ZIF-67 particles
2.1.5 Synthesis of Co-NCNTs-700
2.1.6 Preparation Co-NCNPs-700
2.1.7 Preparation of ZIF-UA-440
2.1.8 Electrode pre-treatment and preparation of catalyst ink
2.1.9 Preparation of catalyst layer
2.1.10 Preparation of gas diffusion layer
2.2 Synthesis of DSNCs-700
2.2.1 Synthesis of ZIF-67-700
2.2.2 Synthesis of ZIF-67-UA-400
2.2.3 Acid washing
2.2.4 Catalyst ink
2.2.5 Preparation of Catalyst layer for supercapacitor
2.3 Electrochemical tests
2.3.1 Cyclic voltammetry (CV)
2.3.2 Rotating ring disk electrode (RRDE) analysis and Tafel slope
2.3.3 Potential Gap (ΔE)
Chapter 3: In-situ growth of N-CNTs on MOF derived carbon materials as highlyefficient electro catalyst for Oxygen reduction and revolution reaction
3.1 introductions
3.2 Results and Discussio
3.2.1 Structure morphology and the effect of heating temperature on N-CNTs
3.2.2 XRD and RS study of Co-NCNTs-700 and Co-NCNPs-700
3.2.3 Surface functionalities and surface area Analysis
3.2.4 TGA, MS and FT-IR analysis of UA
3.3 The oxygen reduction- evolution reaction activities and ZAB performance of the asprepared materials
3.3.1 The Oxygen reduction-evolution reaction activities
3.3.2 ZAB performance
Chapter 4: MOFs derived hybrid double shell Nanocages carbon materials forefficientOxygen reduction reaction (ORR) and supercapacitor
4.1 Introduction
4.2 Results and discussions
4.2.1 SEM and TEM analysis
4.2.2 XPS and BET analysis
4.2.3 XRD and RS analysis
4.3 ORR activity and Supercapacitor performance
4.3.1 ORR activity
4.3.2 Supercapacitor performance
Chapter 5: Conclusion
References
Acknowledgement
Author's Introduction
Advisor's Introduction
附件
本文编号:3790784
本文链接:https://www.wllwen.com/kejilunwen/huaxuehuagong/3790784.html