高氮奥氏体不锈钢的组织与性能研究
本文关键词:高氮奥氏体不锈钢的组织与性能研究
更多相关文章: 高氮奥氏体不锈钢 热处理 显微组织 力学性能 应变硬化指数
【摘要】:高氮奥氏体不锈钢(以下简称高氮钢)具有高强度、高韧性等优异的力学性能,优良的耐蚀性能和磁性能,通过以氮代镍既能稳定奥氏体组织又能大大降低原材料成本,高氮钢的研究工作受到国内外学者的关注与重视。作为结构材料的高氮钢,工程使用中要承受不同载荷,然而在高温条件下,高氮钢的组织稳定性较差。基于这两点,深入研究高氮钢的力学性能和组织稳定性具有相当重要的意义。本文以铸态0Cr21Mn17Mo2NbN高氮钢为研究对象,对不同热处理条件下高氮钢的拉伸应变硬化行为进行分析,拟合其应变硬化曲线,并分析了拉伸断口形貌;对不同压缩变形量下固溶处理后高氮钢的组织特征进行了分析,探究了其变形特征;研究了高氮钢的时效析出规律,对时效后层片状的析出物进行热处理调整,分析了热处理调整后的组织特征。研究结果表明:(1)固溶态的拉伸试样抗拉强度最高,铸态的次之,而最大总伸长率分别达到了48.7%、46.6%,表现出了很强的塑性变形能力。时效态的试样力学性能最差,最大总伸长率仅为9%。固溶态的应变硬化指数最高为0.83,铸态次之,时效态最低。固溶态高氮钢拉伸断口韧窝特征明显,断裂方式为典型的微孔聚集型断裂,表现出明显的韧性断裂特征;时效态高氮钢的断裂为沿晶断裂,表现出明显的脆性断裂特征;铸态高氮钢的断口为穿晶断裂和沿晶断裂混合断口,断裂类型近似为准解理断裂。(2)固溶态实验钢在压缩变形初期时,主要是以滑移变形为主,滑移主要以单滑移为主。随变形量增加至30%,开始出现孪晶。当变形量增加至40%左右,孪晶局部被滑移线切过。当变形量进一步增加时,位错大量增殖导致孪晶被滑移线切成块状。(3)铸态实验钢经1140℃和10小时固溶处理后,在750℃、850℃、950℃下进行不同保温时间时效处理,然后在1020℃分别保温2小时、4小时后水淬。实相同的保温时效时间内,850℃下析出最为明显。同一时效温度下,随保温时间延长,胞状析出物由晶界向晶内生长,形状呈层片状、条状、短棒状及颗粒状;850℃时效8小时、16小时后经1020℃保温4小时,析出物的球化现象比较明显。随着保温时间延长,硬度不断降低。
【学位授予单位】:长春工业大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TG142.71
【相似文献】
中国期刊全文数据库 前10条
1 罗永赞;奥氏体不锈钢自攻缧钉──可以攻入金属的螺钉[J];材料开发与应用;2000年03期
2 孙长庆;超级奥氏体不锈钢的发展,性能与应用(下)[J];化工设备与管道;2000年01期
3 张朝生;日本开发高氮无镍奥氏体不锈钢[J];上海金属;2002年04期
4 杜存臣;奥氏体不锈钢在工业中的应用[J];化工设备与管道;2003年02期
5 ;专利名称:抗氧化和防腐蚀的含钼奥氏体不锈钢[J];中国钼业;2005年02期
6 崔大伟;曲选辉;李科;;高氮低镍奥氏体不锈钢的研究进展[J];材料导报;2005年12期
7 ;宝钢节镍型控氮奥氏体不锈钢产品研发成功[J];焊管;2009年03期
8 ;新型医用无镍奥氏体不锈钢研究获进展[J];军民两用技术与产品;2010年02期
9 袁军平;李卫;陈绍兴;卢焕洵;;高氮无镍奥氏体不锈钢的研究与发展[J];铸造;2012年11期
10 李晓明;王冰;张泽;廖晓君;李国艳;;奥氏体不锈钢低温性能及选用[J];石油化工设备;2013年S1期
中国重要会议论文全文数据库 前10条
1 徐嘉鹏;王东亚;;奥氏体不锈钢强化机理[A];第三届中国功能材料及其应用学术会议论文集[C];1998年
2 陈兆平;姜周华;黄宗泽;邹德玲;梁连科;;奥氏体不锈钢中氮的溶解行为[A];2004年全国冶金物理化学学术会议专辑[C];2004年
3 陈兆平;姜周华;黄宗泽;;奥氏体不锈钢熔体中氮含量的计算和测定[A];2005中国钢铁年会论文集(第3卷)[C];2005年
4 杨宴宾;朱海华;陈龙夫;张国民;刘全利;吴俊;;浅谈宝钢1780热轧奥氏体不锈钢轧制稳定性[A];全国冶金自动化信息网2011年年会论文集[C];2011年
5 张玉碧;魏捍东;刘海定;王东哲;安身景;;高氮奥氏体不锈钢热处理制度对其组织性能影响[A];2011中国功能材料科技与产业高层论坛论文集(第二卷)[C];2011年
6 季灯平;江来珠;吴狄峰;;节镍型奥氏体不锈钢生产的若干问题研究[A];第二届钢材质量控制技术——形状、性能、尺寸精度、表面质量控制与改善学术研讨会文集[C];2012年
7 陈登明;孙建春;马毅龙;郭镇炯;;奥氏体不锈钢相变磁性研究[A];2011中国功能材料科技与产业高层论坛论文集(第二卷)[C];2011年
8 王小英;任大鹏;姜桂芬;;21-6-9奥氏体不锈钢失效机制[A];中国工程物理研究院科技年报(2000)[C];2000年
9 郁东键;;奥氏体不锈钢水冷焊工艺应用[A];石油工程焊接技术交流及焊接设备焊接材料应用研讨会论文专刊[C];2004年
10 纪晓春;吴幼林;何明山;王正樵;;堆外γ辐照对奥氏体不锈钢耐蚀性能的影响[A];面向21世纪的科技进步与社会经济发展(下册)[C];1999年
中国重要报纸全文数据库 前10条
1 周纹;10月欧洲奥氏体不锈钢附加费将下调[N];中国冶金报;2007年
2 梁峗;奥氏体不锈钢生产技术获重大突破[N];中国工业报;2008年
3 记者 蔡立军;天津不锈钢市场规范销售行为注重产品信誉[N];中国冶金报;2004年
4 唐佩绵;耐热奥氏体不锈钢的特性和应用[N];世界金属导报;2014年
5 记者 苏勇;太钢成功开发出超级奥氏体不锈钢904L热轧中板[N];中国冶金报;2008年
6 黄传宝;太钢成功开发出超级奥氏体不锈钢904L热轧中板[N];经理日报;2008年
7 董瀚;可持续发展的高氮奥氏体不锈钢[N];世界金属导报;2014年
8 ;中国应推广200系列奥氏体不锈钢[N];世界金属导报;2003年
9 杨雄飞;节镍型奥氏体不锈钢展望[N];世界金属导报;2007年
10 姜国芳;奥氏体不锈钢管道的焊接与耐蚀性[N];中国建设报;2006年
中国博士学位论文全文数据库 前10条
1 马飞;奥氏体不锈钢低温气体渗碳层组织性能及催渗技术研究[D];机械科学研究总院;2015年
2 于敦吉;奥氏体不锈钢循环塑性的微观机理和宏观本构描述[D];天津大学;2014年
3 李花兵;高氮奥氏体不锈钢的冶炼理论基础及其材料性能研究[D];东北大学;2008年
4 马玉喜;高氮奥氏体不锈钢组织结构及韧脆转变机制的研究[D];昆明理工大学;2008年
5 徐明舟;高氮奥氏体不锈钢的力学行为和组织稳定性[D];东北大学;2011年
6 王松涛;高氮奥氏体不锈钢的力学行为及氮的作用机理[D];中国科学院研究生院(理化技术研究所);2008年
7 石锋;高氮奥氏体不锈钢的组织稳定性研究[D];东北大学;2008年
8 孙世成;高氮无镍奥氏体不锈钢的微观结构和力学性能研究[D];吉林大学;2014年
9 黄亚敏;基于电子背散射衍射和纳米压痕技术的奥氏体不锈钢微结构与性能关系研究[D];武汉大学;2010年
10 张志鹏;氮表面改性奥氏体不锈钢的扩散动力学研究[D];大连理工大学;2014年
中国硕士学位论文全文数据库 前10条
1 马国艳;Mn对奥氏体不锈钢耐蚀性能影响的研究[D];西安建筑科技大学;2015年
2 李鹏燕;超细晶粒奥氏体不锈钢的制备与组织性能研究[D];河南科技大学;2015年
3 孙彬涵;高钼高氮超级奥氏体不锈钢时效析出行为和耐腐蚀性能研究[D];东北大学;2013年
4 刘志勇;奥氏体不锈钢晶界特征分布研究[D];山东理工大学;2012年
5 王世国;奥氏体不锈钢低温离子硬化处理及工业应用研究[D];青岛科技大学;2015年
6 董珠琳;用于升降装置的奥氏体不锈钢材料及其桅杆制造的研究[D];南昌航空大学;2015年
7 万立华;冷轧301不锈钢逆转变的组织与性能研究[D];燕山大学;2015年
8 王扬亚;奥氏体不锈钢低温硬化处理后表面亮化处理的研究[D];青岛科技大学;2016年
9 杨广义;奥氏体不锈钢低温离子—气体复合硬化处理的研究[D];青岛科技大学;2016年
10 马继刚;高氮奥氏体不锈钢的组织与性能研究[D];长春工业大学;2016年
,本文编号:1200837
本文链接:https://www.wllwen.com/kejilunwen/jiagonggongyi/1200837.html