激光冲击对铜薄膜电学性能的影响及其冲击效应仿真研究
发布时间:2018-01-01 13:35
本文关键词:激光冲击对铜薄膜电学性能的影响及其冲击效应仿真研究 出处:《江苏大学》2016年硕士论文 论文类型:学位论文
更多相关文章: 激光冲击 磁控溅射 铜薄膜 电学性能 仿真模拟
【摘要】:集成电路产业是微电子产业的基础,在经济发展中起到重要作用。然而,在超大集成电路的设计制造中,随着集成度的增进和线宽的减少,电路连线材料强度提高及其电阻率的有效降低成为研究热点问题之一。激光冲击处理技术是一种新型的表面处理技术,具有能使材料产生形变、相变和位错等组织变化从而改善其性能的独特优势。本文基于小能量激光冲击处理工艺,从实验和仿真两个方面对激光冲击后纳米铜薄膜的电学性能变化以及冲击效应进行了研究。主要取得了如下成果:(1)对纳米铜薄膜的制备工艺进行了研究。通过改变衬底温度分别在硅片(Si)和聚酰亚胺(PI)上镀膜,比较分析了其表面形貌、组织结构以及电学性能。结果表明:在工作气压0.5Pa、溅射功率100w、衬底温度150℃条件下两种基体上制备的薄膜表面平整、晶粒大小均匀、缺陷相对于其他温度较少;同时测得此条件下制备态Cu/Si薄膜电阻率为1.4×10-8Ω.m,Cu/PI薄膜电阻率为2.3×10-8Ω.m。(2)开展了激光微冲击纳米铜薄膜的实验研究。基于一维应变波理论对冲击作用下材料内部应力波传播的基本过程进行了分析。结合SEM、XRD、TEM等方法对冲击后薄膜进行分析发现:激光冲击处理后薄膜的表面粗糙度降低,晶粒出现了“长大”的现象,且内部有孪晶结构生成。电学性能测试表明:Cu/Si薄膜电阻率最大降低为原来的87.2%,Cu/PI薄膜电阻率最大降低为原来的89.4%。(3)开展了激光冲击纳米铜薄膜效应的模拟研究。运用应力波理论进行模拟分析了激光冲击作用下薄膜与基体界面的应力波传播特征;并对冲击后表面应变程度进行讨论。研究表明:当冲击波峰值压力小于薄膜的弹性极限时,薄膜没有发生塑性变形,冲击波为弹性波。当冲击波峰值压力大于薄膜弹性极限时,冲击波为弹塑性波。此外,表面应变程度随激光功率密度的增大而增加,应变最大数值出现在激光光斑中心位置,且在同一激光功率密度作用下,表面应变程度也表现出随冲击次数的增加而增加的现象,但应变增大幅度随冲击次数的增加而减小。
[Abstract]:The integrated circuit industry is the foundation of the microelectronics industry and plays an important role in the economic development. However, in the design and manufacture of VLSI, with the increase of integration and the decrease of line width. The improvement of the strength and the effective reduction of the resistivity of the circuit connection materials have become one of the hot issues. Laser shock treatment is a new surface treatment technology, which can make the material deform. The unique advantages of phase transformation and dislocation change to improve its performance. This paper is based on the low energy laser shock treatment process. The changes of electrical properties and impact effects of nanocrystalline copper films after laser shock were studied from two aspects of experiment and simulation. The preparation process of nanocrystalline copper thin films was studied. The films were deposited on silicon (Si) and polyimide (Pi) by changing the substrate temperature. The surface morphology, microstructure and electrical properties were compared and analyzed. The results showed that the sputtering power was 100w at the working pressure of 0.5 Pa. At the substrate temperature of 150 鈩,
本文编号:1364733
本文链接:https://www.wllwen.com/kejilunwen/jiagonggongyi/1364733.html