当前位置:主页 > 科技论文 > 铸造论文 >

铸态Mg-Li-Al-xSi合金微观组织和力学性能(英文)

发布时间:2018-01-16 04:31

  本文关键词:铸态Mg-Li-Al-xSi合金微观组织和力学性能(英文) 出处:《稀有金属材料与工程》2017年08期  论文类型:期刊论文


  更多相关文章: 镁合金 显微组织 力学性能 硅元素


【摘要】:实验铸造了Mg-9Li-3Al-x Si(x=0,0.1,0.5,1.0,质量分数,%)合金并通过OM,SEM,XRD和力学性能测试对其进行了研究。结果表明:铸态Mg-9Li-3Al合金组织中主要由α-Mg、β-Li、Mg_(17)Al_(12)相组成。加入Si后,合金中出现了新相Mg2Si,晶粒得到了明显细化,且Si能够抑制Mg_(17)Al_(12)的形成;当合金中的Si含量过高时,α-Mg相粗化,且会在相界处出现块状和汉字状的Mg_2Si相。合金的强度随着Si含量的增加呈现先增加后降低的趋势,合金的延伸率随着Si含量的增加呈现逐渐降低的趋势。当合金中Si含量为0.1%时,抗拉强度达到最大值182.5 MPa,延伸率为12.1%。
[Abstract]:The alloy of Mg-9Li-3Al-x SixCX 0. 1 + 0. 5 + 1. 0. 0. 0. 0. 0. 1. 0. 0. 0. 5. 0. 0. 0. 0. 0. 0. 5. The results of XRD and mechanical properties test show that 伪 -Mg, 尾 -Li is the main component in the as-cast Mg-9Li-3Al alloy. After adding Si, a new phase mg _ 2Si appears in the alloy, and the grain size is obviously refined. And Si can inhibit the formation of MgS17 / AlS-1); When the Si content in the alloy is too high, 伪 -Mg phase coarser, and there will be block and Chinese character Mg_2Si phase at the phase boundary. The strength of the alloy increases first and then decreases with the increase of Si content. The elongation of the alloy decreases gradually with the increase of Si content. When the Si content in the alloy is 0.1, the tensile strength reaches the maximum of 182.5 MPa and the elongation is 12.1MPa.
【作者单位】: 重庆大学;国家镁合金材料工程技术研究中心;
【基金】:Fundamental Research Funds for the Central Universities of China(106112015CDJXY130011,CDJZR14130007)
【分类号】:TG146.22;TG292
【正文快照】: The demand for lightweight structural materials is fueledtensive application of Mg-Li alloys is restricted.by the strategic requirement of reducing the greenhouse gasAccording to Mg-Li binary phase diagram,α-Mg withemissions and energy consumption[1,2].

【相似文献】

相关期刊论文 前10条

1 王松林;;船轴的热处理及其力学性能[J];大型铸锻件;1987年03期

2 ;力学性能二级人员取证复习参考题(之一)解答[J];理化检验(物理分册);1997年12期

3 ;力学性能二级人员取证复习参考题(之三)解答[J];理化检验(物理分册);1998年04期

4 陈金宝;高温力学性能二级人员取证复习参考题(持久部分之五)解答[J];理化检验(物理分册);2000年02期

5 李长林;孙中仁;;关于40CrNiMo钢力学性能问题的讨论[J];大型铸锻件;2013年04期

6 吴全兴;实用钛合金的力学性能和工程[J];钛工业进展;1994年06期

7 李光新,马新沛,孙学山;含碳量对预应力混凝土钢筋力学性能的影响[J];金属热处理;2000年05期

8 史光亮,寇劲松;低碳拉丝钢盘条力学性能改进试验[J];甘肃冶金;2000年04期

9 赵中平;;工艺性能是否属于力学性能[J];发电设备;2013年04期

10 王松林;;热处理方法对碳钢艉轴力学性能的影响[J];大型铸锻件;1989年04期

相关会议论文 前10条

1 李和田;;253MA钢高温力学性能的测定[A];2008全国MTS断裂测试研讨会论文集[C];2008年

2 段东明;任池锦;;高性能高层建筑结构用钢力学性能与组织研究[A];第5届中国金属学会青年学术年会论文集[C];2010年

3 陆琪;罗月新;计波;;热处理对7715D高温钛合金组织及力学性能的影响[A];第十四届全国钛及钛合金学术交流会论文集(下册)[C];2010年

4 马兴涛;王德龙;;锰含量和工艺参数对低碳钢力学性能的影响[A];山东省金属学会理化检验学术委员会理化检验学术交流会论文集[C];2009年

5 李泾;孙洪刚;赵宪明;;特殊钢轧制过程力学性能预报[A];2006年全国轧钢生产技术会议文集[C];2006年

6 于国财;吴林志;马力;;碳纤维铝合金层板的力学性能和失效行为研究[A];中国力学大会——2013论文摘要集[C];2013年

7 杨桂瑜;;酸洗液浓度对盘条力学性能的影响[A];纪念《金属制品》创刊40周年暨2012年金属制品行业技术信息交流会论文集[C];2012年

8 陈驹;熊永光;周瑛琦;薛文;金伟良;;新型建筑钢材在高温下的力学性能劣化研究[A];2011中国材料研讨会论文摘要集[C];2011年

9 费翠萍;;稀土镧、镨对铝导线导电性能和力学性能的影响[A];全国第十二届轻合金加工学术交流会论文集[C];2003年

10 宁军;刘世余;;提高康明斯K38缸体力学性能的工艺措施[A];重庆市机械工程学会铸造分会、重庆铸造行业协会2010重庆市铸造年会论文集[C];2010年

相关重要报纸文章 前3条

1 ;热轧带钢力学性能在线监控系统(待续)[N];世界金属导报;2001年

2 王华;大厚度海洋平台用钢的组织和力学性能[N];世界金属导报;2013年

3 余万华;CQE-热轧钢卷的力学性能控制模型[N];世界金属导报;2009年

相关博士学位论文 前6条

1 任小勇;地质工程用高性能无钴硬质合金的制备、结构及力学性能研究[D];中国地质大学(北京);2016年

2 蔡志辉;高强塑性中锰钢的组织演变及力学性能的研究[D];东北大学;2015年

3 黄礼新;CLAM钢高温组织演变与力学性能研究[D];燕山大学;2014年

4 罗丹;镁—锡—锌镁合金的组织控制和力学性能[D];吉林大学;2015年

5 夏志新;低活化钢中析出型相变及其对力学性能的影响[D];清华大学;2011年

6 马炳东;脉冲电流对高强度钢组织与力学性能的影响及数值模拟分析[D];吉林大学;2014年

相关硕士学位论文 前10条

1 裴旺;磁控溅射制备V-Al-Ta-N四元涂层结构及其性能研究[D];昆明理工大学;2015年

2 蔡宝壮;超细晶铜基合金塑性变形机理及力学性能的研究[D];昆明理工大学;2015年

3 尹晓君;含Ca、Sb的Mg-xAl-yZn-zSi合金组织与性能研究[D];陕西理工学院;2015年

4 张雨溪;改性陶瓷粉体对铸造锌铝合金组织及性能影响的研究[D];大连交通大学;2015年

5 刘玲丽;变面循环轧制AZ31镁合金微观组织与力学性能研究[D];南京理工大学;2015年

6 魏东;稀土Ce对H13钢组织和力学性能的影响[D];内蒙古工业大学;2015年

7 张剑;磁控溅射纳米硬质膜工艺及力学性能研究[D];沈阳理工大学;2015年

8 张U,

本文编号:1431591


资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/jiagonggongyi/1431591.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户c6fef***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com