Ti6A14V的高速切削加工的有限元分析及摩擦模型的研究
发布时间:2018-01-19 06:11
本文关键词: 摩擦模型 Ti6Al4V 高速切削加工 有限元模拟 出处:《昆明理工大学》2017年硕士论文 论文类型:学位论文
【摘要】:钦合金以其轻质、耐腐蚀性、耐热性以及大的比强度和良好的韧性等等一系列的优点,在航空航天、石油化工、汽车、造船以及医药等行业得到了广泛的应用。但是钛合金的难加工性一直困扰着众多的国家学者,在高速切削钛合金时,刀具的磨损不仅造成加工成本的增加,而且还影响切削加工的效率。为了降低刀具成本,提高加工效率,必须搞清楚刀具和工件材料之间的摩擦性质。本文以钛合金Ti6Al4V为研究对象,研究了在不同的切削条件下刀具和工件材料之间的摩擦问题。本课题首先对国内外高速切削加工以及切削仿真中的摩擦模型的研究现状进行了概括。然后通过对金属切削加工过程有限元建模中的材料本构模型、摩擦模型、切削分离模型以及网格的划分技术等一些关键技术进行分析,建立起二维正交切削有限元模型。利用有限元仿真软件Advantage FEM,在不同摩擦系数下分别进行模拟切削,并通过对不同摩擦系数下模拟得到的切削力和试验测得的切削力进行对比分析,将二者之间的误差控制在5%以内,来确定刀具和工件材料之间的平均摩擦系数。然后再利用现有的平均摩擦系数计算公式,在不同切削条件下,调整平均摩擦系数公式中的修正系数c的值,使得模拟的切削力和试验的切削力的误差控制在5%以内。根据算出的不同切削条件下的各个平均摩擦系数,进行数据拟合,建立起摩擦模型。然后利用该摩擦模型进行三维模拟仿真,并将模拟得到的数据和试验数据进行对比分析。从而证明该摩擦模型的正确性。
[Abstract]:Chin alloy with its lightweight, corrosion resistance, heat resistance and large specific strength and good toughness and a series of advantages in aerospace, petrochemical, automotive. Shipbuilding, medicine and other industries have been widely used, but the difficult processing of titanium alloys has been puzzling many national scholars, in high-speed cutting titanium alloys, tool wear not only causes the increase of processing costs. In order to reduce the cutting cost and improve the machining efficiency, it is necessary to find out the friction properties between the cutting tool and the workpiece material. In this paper, the titanium alloy Ti6Al4V is taken as the research object. The friction problem between cutting tools and workpiece materials under different cutting conditions is studied. Firstly, the current situation of friction models in high-speed cutting and cutting simulation at home and abroad is summarized. The material constitutive model in the finite element modeling of metal cutting process. Some key technologies, such as friction model, cutting separation model and meshing technology, are analyzed, and a two-dimensional orthogonal cutting finite element model is established. The finite element simulation software Advantage FEM is used. Simulation cutting is carried out under different friction coefficients, and the error between them is controlled within 5% by comparing and analyzing the cutting force simulated under different friction coefficient and the cutting force measured by experiment. To determine the average friction coefficient between cutting tool and workpiece material, and then adjust the value of correction coefficient c in the formula of average friction coefficient under different cutting conditions by using the existing formula of average friction coefficient. The error of the simulated cutting force and the experimental cutting force is controlled within 5%. The data are fitted according to the calculated average friction coefficients under different cutting conditions. A friction model is established, and then the friction model is used to carry out three-dimensional simulation, and the data obtained from the simulation and the experimental data are compared and analyzed to prove the correctness of the friction model.
【学位授予单位】:昆明理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TG506.1
【相似文献】
相关期刊论文 前10条
1 谢婧;;高速切削加工在机械制造中的应用[J];机械设计与制造;2006年06期
2 曹智;赵钢;李跃中;;高速切削加工的刀具选择[J];电大理工;2008年02期
3 陈萃;纪义国;;高速切削加工中新型智能刀柄单元的设计[J];长春理工大学学报(自然科学版);2010年01期
4 龚厚仙;;数控高速切削加工技术的发展与应用研究[J];数字技术与应用;2011年06期
5 戴玲;;浅谈高速切削加工技术及应用[J];科学大众(科学教育);2011年11期
6 李家峰;张亚双;孙老,
本文编号:1442965
本文链接:https://www.wllwen.com/kejilunwen/jiagonggongyi/1442965.html