当前位置:主页 > 科技论文 > 铸造论文 >

线切割加工中多目标优化算法的应用

发布时间:2018-02-26 19:35

  本文关键词: 慢走丝线切割 支持向量机回归 粒子群优化算法 多目标优化 出处:《机械科学与技术》2017年03期  论文类型:期刊论文


【摘要】:为了解决慢走丝线切割加工中难以同时获得较快加工速度和较优表面质量的问题,从其加工参数与加工指标之间的高度非线性关系入手;选取水压(WP)、脉冲时间(T_(on))、脉冲间隔(T_(off))、电极丝张力(WT)、丝速(WS)和伺服参考电压(SV)作为优化参数,以表面粗糙度(Ra)、材料去除率(MRR)作为优化指标,设计正交实验;创新运用支持向量机回归(SVMR)结合粒子群优化算法(PSO)建立其多目标预测优化模型,得到最优加工参数;实验结果表明,所建立的多目标预测优化模型预测精度高、优化效果显著。
[Abstract]:In order to solve the problem that it is difficult to obtain faster machining speed and better surface quality simultaneously in slow walking wire cutting, the highly nonlinear relationship between machining parameters and machining index is discussed. Water pressure, pulse time, pulse interval, wire tension, wire speed gauge (WSW) and servo reference voltage (SVV) were selected as optimization parameters, surface roughness and material removal rate (MRR) were taken as optimization index, and orthogonal experiments were designed. Support vector machine regression vector machine (SVMR) combined with particle swarm optimization (PSO) is used to establish its multi-objective predictive optimization model to obtain the optimal machining parameters. The experimental results show that the proposed multi-objective predictive optimization model has high prediction accuracy and remarkable optimization effect.
【作者单位】: 华中科技大学机械科学与工程学院;
【基金】:国家自然科学基金项目(51175207)资助
【分类号】:TG48;TP18

【相似文献】

相关期刊论文 前10条

1 姜斌;梁士锋;冯佳佳;;催化吸收稳定系统的多目标优化[J];计算机与应用化学;2008年01期

2 刘扬;模糊优化与多目标优化的类同性[J];大庆石油学院学报;1990年01期

3 覃孟扬;刘大维;罗永顺;李玉忠;;基于灰色系统理论的车削参数多目标优化(英文)[J];机床与液压;2013年24期

4 厉小军,俞欢军,李绍军,胡上序;进化多智能体技术在多目标优化中的应用[J];化工学报;2004年03期

5 韩方煜,贾小平;环境友好过程的建模和多目标优化[J];计算机与应用化学;2004年01期

6 吴华武;胡鑫尧;;锆铪萃取分离系统参数的多目标优化决策[J];计算机与应用化学;1991年04期

7 江沛;曹柳林;;聚酯工业生产缩聚过程的多目标优化[J];计算机与应用化学;2007年11期

8 岳金彩;程华农;杨霞;郑世清;韩方煜;;连续过程的多目标优化[J];计算机与应用化学;2009年11期

9 邵辉;李晶;杨丽丹;;基于多目标优化的危险化学品运输模式探讨[J];中国安全生产科学技术;2010年02期

10 李云玲;;提升运输多目标优化控制系统设计[J];科技经济市场;2013年03期

相关会议论文 前10条

1 张翔;;一种无歧义性的多目标优化数值解法[A];中国农业机械学会成立40周年庆典暨2003年学术年会论文集[C];2003年

2 罗亚中;;航天器轨迹多目标优化研究评述[A];The 5th 全国动力学与控制青年学者研讨会论文摘要集[C];2011年

3 耿玉磊;张翔;;多目标优化的求解方法与发展[A];福建省科协第四届学术年会——提升福建制造业竞争力的战略思考专题学术年会论文集[C];2004年

4 耿玉磊;张翔;;多目标优化的求解方法与发展[A];福建省科协第四届学术年会提升福建制造业竞争力的战略思考专题学术年会论文集[C];2004年

5 程鹏;唐雁;邹显春;;约束多目标优化试验函数产生器[A];2008年计算机应用技术交流会论文集[C];2008年

6 贾小平;韩方煜;;多目标优化及其在过程工程中的应用[A];过程系统工程2001年会论文集[C];2001年

7 邢志祥;;灭火救援力量调集的多目标优化[A];第一届全国安全科学理论研讨会论文集[C];2007年

8 孙力;樊希山;姚平经;;化工过程多目标优化适宜解的模糊确定[A];第二届全国传递过程学术研讨会论文集[C];2003年

9 李颖t;昝建明;周建文;;多目标形貌优化方法研究[A];结构及多学科优化工程应用与理论研讨会’2009(CSMO-2009)论文集[C];2009年

10 许碧霞;李兆江;;基于循环经济的城市污水多目标优化配置分析[A];中国地理学会2007年学术年会论文摘要集[C];2007年

相关博士学位论文 前10条

1 王晗丁;复杂问题的多目标进化优化算法研究[D];西安电子科技大学;2015年

2 董宁;求解约束优化和多目标优化问题的进化算法研究[D];西安电子科技大学;2015年

3 邹娟;高维多目标进化优化及降维评价的方法研究[D];湘潭大学;2014年

4 杨光;求解多目标优化问题的NWSA研究及其工程应用[D];吉林大学;2015年

5 王超;装载与车辆路径联合多目标优化问题研究[D];大连理工大学;2016年

6 叶承晋;计算智能在电力系统多目标优化中的应用研究[D];浙江大学;2015年

7 过晓芳;超多目标优化问题的几种进化算法研究[D];西安电子科技大学;2015年

8 左益;基于全局优化和局部学习的进化多目标优化算法[D];西安电子科技大学;2016年

9 卢芳;多目标优化及随机变分不等式问题的若干研究[D];重庆大学;2016年

10 徐志丹;基于生物地理算法的多目标优化理论与应用研究[D];哈尔滨工程大学;2013年

相关硕士学位论文 前10条

1 何素素;基于改进的粒子群算法的钻进参数多目标优化研究[D];西安石油大学;2015年

2 黄怡;基于药效综合评价的中药组分配伍优化方法研究[D];浙江大学;2015年

3 韩伟;基于混合智能算法在造纸废水厌氧消化处理过程多目标优化中的研究[D];华南理工大学;2015年

4 彭清风;基于鲁棒性的船体中横剖面多目标优化[D];上海交通大学;2015年

5 崔华;面向个性化需求的服务组合优化方法[D];哈尔滨工业大学;2015年

6 章姗捷;基于遗传算法的电力工程多目标优化研究[D];华北电力大学;2015年

7 高敏;基于协同论的风电建设项目多目标优化模型研究[D];华北电力大学;2015年

8 刘培根;基于多目标优化和压缩感知的航拍目标检测[D];电子科技大学;2015年

9 杨凯;基于多目标优化的贵州工业结构调整研究[D];贵州师范大学;2015年

10 陈振兴;基于空间拥挤控制策略的进化多目标优化[D];福建师范大学;2015年



本文编号:1539404

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/jiagonggongyi/1539404.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户87392***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com