生物活性涂层包覆镁合金的制备与性能研究
本文关键词: 镁合金 生物活性涂层 微波 耐蚀性能 细胞相容性 出处:《天津大学》2016年博士论文 论文类型:学位论文
【摘要】:镁及镁合金具有良好的生物相容性和力学相容性,是很有潜力的一类可降解植入材料。然而,镁及镁合金在组织体液中降解过快,限制了其临床应用。生物活性涂层表面改性是提高镁及镁合金耐蚀性能的有效方法。理想的生物活性涂层需具备一定的致密度、厚度与矿化能力,同时,还应具备一定的粘附强度,减缓保护涂层的剥落。因此,在镁及镁合金表面制备具有上述性能的生物活性涂层,有望获得具有良好综合性能的骨修复材料。采用溶胶凝胶-浸渍提拉法结合热处理以及轴向加压,在镁合金(AZ31)表面制备了45S5涂层。热处理和轴向加压可以调节涂层的致密度和界面残余应力。经400°C热处理和4 MPa轴向加压得到的涂层具有较高的致密度,涂层与镁合金界面没有明显缺陷,涂层的粘附强度为25.8±2.6 MPa。随着在SBF(模拟体液)中浸泡时间的延长,涂层表面形成了颗粒堆积结构的矿化层,浸泡17天之后,镁合金的失重为8.9±0.7 mg/cm2。采用微波液相化学法仅需10 min在镁合金表面制备了硅掺杂羟基磷灰石双层涂层:表层为絮状HA(羟基磷灰石),底层为长片状HA,涂层的厚度为?10.7μm。涂层的粘附强度为6.7±0.7 MPa。SBF浸泡实验结果表明:长片状HA为镁合金提供了初期保护作用;絮状HA具有优异的矿化能力,形成的矿化层为镁合金提供了长期保护作用,浸泡24天之后,镁合金的失重为5.4±0.4 mg/cm2。涂层具有较高的细胞活性,上调了I型胶原蛋白和骨钙蛋白的表达。采用微波液相化学法仅需10 min在镁合金表面制备了氟掺杂羟基磷灰石双层涂层:表层为直径35 nm至45 nm的晶须状HA,底层主要为直径70 nm至80 nm的晶须状HA。涂层具有较低的溶解性和优异的矿化能力,形成的矿化层为镁合金提供了长期保护作用,浸泡24天之后,镁合金的失重为4.0±0.3 mg/cm2。晶须状HA构成的分级纳米-微米结构提高了涂层的表面生物活性,显著上调了MC3T3-E1成骨细胞主要分化标记物的表达,增强了成骨细胞的分化。氟掺杂羟基磷灰石涂层对镁合金提供长期保护作用,并改善了细胞相容性,有望作为可降解镁及镁合金的保护涂层而使用。
[Abstract]:Magnesium and magnesium alloys have good biocompatibility and mechanical compatibility and are potential biodegradable implants. The surface modification of bioactive coating is an effective method to improve the corrosion resistance of magnesium and magnesium alloys. The ideal bioactive coating should have a certain density, thickness and mineralization ability, at the same time, There should also be a certain adhesion strength to slow down the spalling of protective coatings. Therefore, bioactive coatings with the above properties should be prepared on magnesium and magnesium alloys. It is expected that the bone repair materials with good comprehensive properties can be obtained. The sol-gel dipping and drawing method combined with heat treatment and axial compression are used. 45S5 coating was prepared on the surface of magnesium alloy AZ31. The density and interface residual stress of the coating can be adjusted by heat treatment and axial compression. The coating obtained by heat treatment at 400 掳C and axial pressure by 4 MPa has high density. There was no obvious defect in the interface between the coating and magnesium alloy, and the adhesion strength of the coating was 25.8 卤2.6 MPA. With the prolongation of soaking time in SBF (simulated body fluid), a mineralized layer with granular stacking structure was formed on the surface of the coating, which was soaked for 17 days. The weight loss of magnesium alloy was 8.9 卤0.7 mg / cm ~ 2. Si-doped hydroxyapatite double layer coating was prepared on magnesium alloy surface by microwave liquid chemical method for only 10 min. The adhesion strength of the coating was 6.7 卤0.7 MPa.SBF. The results showed that the long sheet HA provided initial protection for magnesium alloy, the flocculent HA had excellent mineralization ability, and the mineralized layer provided long-term protection for magnesium alloy. After immersion for 24 days, the weight loss of magnesium alloy was 5.4 卤0.4 mg / cm ~ 2. The expression of type I collagen and osteocalcin was upregulated. Fluorine-doped hydroxyapatite bilayer coating was prepared on magnesium alloy surface by microwave liquid phase chemical method for only 10 min. The surface layer was whisker HA with diameter from 35 nm to 45 nm. The coating has low solubility and excellent mineralizing ability. The mineralized layer provided long-term protection for magnesium alloy. After immersion for 24 days, the weight loss of magnesium alloy was 4.0 卤0.3 mg / cm ~ 2.The graded nano-micron structure of whisker HA enhanced the surface bioactivity of the coating. The expression of major differentiation markers of MC3T3-E1 osteoblasts was up-regulated, and the differentiation of osteoblasts was enhanced. Fluorine-doped hydroxyapatite coating provided long-term protection to magnesium alloys and improved the cytocompatibility of magnesium alloys. It is expected to be used as a protective coating for degradable magnesium and magnesium alloys.
【学位授予单位】:天津大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:TG178
【相似文献】
相关期刊论文 前6条
1 杜贤昌;郭淑兰;董文;徐学东;;AZ31B镁合金A-TIG单一活性剂的设计与研究[J];热加工工艺;2014年09期
2 杜九汪;王强;;AZ80镁合金带内筋薄壁壳体挤压新方法[J];轻合金加工技术;2014年05期
3 刘蒙恩;白莉;袁苗达;樊艳丽;;AZ31镁合金/AgCu合金/5083铝合金TLP扩散焊研究[J];热加工工艺;2014年09期
4 孙彩玲;杨森;王明润;王三军;王晓龙;;化学仿生法制备生物活性涂层的研究现状[J];材料导报;2009年S1期
5 施秋萍;赵玉涛;戴起勋;林东洋;;钛合金表面涂覆生物活性涂层的制备技术及进展[J];真空;2006年06期
6 熊信柏,李贺军,黄剑锋,孙国岭,黄敏;钛基金属表面生物活性改性研究进展[J];稀有金属快报;2004年03期
相关会议论文 前1条
1 高勃;关泰红;吕晓卫;胡江;林鑫;;激光快速成形技术制备梯度生物活性涂层及其理化和力学性能研究[A];第六次全国口腔修复学学术会议论文摘要汇编[C];2009年
相关博士学位论文 前2条
1 申Pr伯;生物活性涂层包覆镁合金的制备与性能研究[D];天津大学;2016年
2 高蕊;镁合金表面超疏水膜层构筑及其防腐性能研究[D];哈尔滨工程大学;2014年
相关硕士学位论文 前2条
1 张敏;镁合金表面植酸/羟基磷灰石生物活性涂层的制备及性能研究[D];天津大学;2016年
2 刘耿;新型全降解镁合金气管支架的制备及性能评价[D];郑州大学;2017年
,本文编号:1555075
本文链接:https://www.wllwen.com/kejilunwen/jiagonggongyi/1555075.html