混合励磁磁悬浮系统高刚度控制策略研究
发布时间:2018-03-10 03:34
本文选题:混合励磁磁悬浮系统 切入点:移动式数控机床 出处:《沈阳工业大学》2017年硕士论文 论文类型:学位论文
【摘要】:随着现代工业的不断发展,高精度工业的生产设备和高精度精密仪器对零件的加工精度要求越来越高,而且传统移动式数控机床的平台与静止导轨之间的摩擦对提高机床刚度具有反作用,因此本文将混合励磁磁悬浮技术应用到龙门移动式数控机床中,目的在于提高龙门移动式数控机床的刚度。而且,控制系统的品质对平台的控制精度和悬浮效果具有决定性作用,因而混合励磁磁悬浮平台的控制系统的研究对提高机床刚度也起到关键作用。首先,本文详细介绍了排斥型混合励磁磁悬浮系统和吸力型混合励磁磁悬浮系统的工作原理,并选择后者作为研究对象,建立单混合励磁磁悬浮系统的数学模型。其次,由于抖振现象,单独运用滑模变结构控制不能满足系统的控制要求。因此提出了混合励磁磁悬浮系统的自适应滑模控制。自适应滑模控制主要分为以下五步骤进行。第一步,确认滑模控制的切换面。第二步,求解出滑模控制的控制律的等效部分。第三步,利用自适应控制设计一个自适应法则来估测滑模控制的参数,将此估测参数代替滑模控制律的切换部分,得到完整的自适应滑模控制律。第四步,构建Lyapunov函数,证明该控制满足可达性条件。第五步,用MATLAB仿真验证该控制方法的可行性。再次,为了很大程度上降低抖振现象的负面影响,并且提高系统刚度,在前文自适应滑模控制的基础上,提出了基于HJI的鲁棒控制,引入表示系统鲁棒性能的L2增益J,J越小系统鲁棒性能越好,通过合理设计使其满足HJI不等式,完成控制理论,利用MATLAB仿真验证该控制方法的可行性。最后,将自适应滑模控制和基于HJI的自适应滑模鲁棒控制的仿真结果作对比,验证后者是否比前者提高混合励磁磁悬浮系统的刚度效果更好。
[Abstract]:With the development of modern industry, the production equipment of high-precision industry and high-precision precision instruments require higher and higher machining precision of parts. Moreover, the friction between the platform of the traditional mobile CNC machine tool and the static guide rail is counterproductive to improve the rigidity of the machine tool, so this paper applies the hybrid excitation magnetic levitation technology to the gantry mobile CNC machine tool. The purpose is to improve the rigidity of the gantry mobile CNC machine tool. Moreover, the quality of the control system plays a decisive role in the control accuracy and suspension effect of the platform. Therefore, the study of the control system of the hybrid excitation maglev platform also plays a key role in improving the rigidity of the machine tool. Firstly, the working principle of the repulsive hybrid excitation magnetic levitation system and the suction hybrid excitation magnetic levitation system is introduced in detail. The latter is chosen as the research object to establish the mathematical model of single-hybrid excitation maglev system. Secondly, because of buffeting phenomenon, The sliding mode variable structure control alone can not meet the control requirements of the system. Therefore, an adaptive sliding mode control for the hybrid excitation maglev system is proposed. The adaptive sliding mode control is mainly divided into the following five steps. The switching surface of sliding mode control is confirmed. In the second step, the equivalent part of the control law of sliding mode control is solved. In the third step, an adaptive rule is designed to estimate the parameters of sliding mode control. By replacing the switching part of the sliding mode control law with this estimation parameter, a complete adaptive sliding mode control law. 4th steps is obtained. The Lyapunov function is constructed, and the reachability condition of the control is proved. 5th steps. The feasibility of the control method is verified by MATLAB simulation. Thirdly, in order to reduce the negative effect of buffeting phenomenon and improve the system stiffness to a great extent, a robust control based on HJI is proposed based on the previous adaptive sliding mode control. The L2 gain JnJ small system is introduced to represent the robust performance of the system. The better the robustness is, the better the robust performance is. The control theory is completed by reasonable design to satisfy the HJI inequality, and the feasibility of the control method is verified by MATLAB simulation. The simulation results of adaptive sliding mode control and adaptive sliding mode robust control based on HJI are compared to verify whether the latter is better than the former in improving the stiffness of the hybrid excitation maglev system.
【学位授予单位】:沈阳工业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TG659
【参考文献】
相关期刊论文 前9条
1 寇宝泉;张鲁;李立毅;张赫;;平面电动机技术发展综述[J];微电机;2010年11期
2 张文跃;杨均悦;葛研军;王刚军;;斥力型磁悬浮平台建模及仿真[J];武汉理工大学学报(信息与管理工程版);2010年01期
3 彭辉;徐锦华;侯海良;;模糊控制在磁悬浮球系统实时控制中的应用[J];控制工程;2009年03期
4 景敏卿;刘恒;梁金星;虞烈;;二维高精度磁悬浮定位平台的研究[J];西安交通大学学报;2008年11期
5 郭庆鼎;刘德君;赵希梅;;基于输入解耦的6DOF磁悬浮平台悬浮高度的H_∞控制[J];电工技术学报;2005年11期
6 郝晓红,梅雪松,张东升,陶涛,姜歌东;新型磁悬浮精密定位平台的研究[J];西安交通大学学报;2005年09期
7 李黎川,丁玉成,卢秉恒;超精密磁悬浮工作台及其解耦控制[J];机械工程学报;2004年09期
8 王江潮,欧阳华,杜朝辉;德国磁悬浮列车的悬浮与驱动系统[J];国外铁道车辆;2004年03期
9 周勇为,常熹钰,易仕和;低湍流度磁悬浮风洞的气动和结构设计[J];流体力学实验与测量;2001年04期
,本文编号:1591606
本文链接:https://www.wllwen.com/kejilunwen/jiagonggongyi/1591606.html