铣磨非球面透镜的金刚石工具制备及加工技术研究
发布时间:2018-03-10 05:38
本文选题:非球面 切入点:细粒度金刚石铣磨刀具 出处:《华侨大学》2017年硕士论文 论文类型:学位论文
【摘要】:随着现代科技的不断发展,具有良好光学特性的非球面的应用变得越为广泛。如何实现非球面的高精度加工成为了研究热点。对于硬脆材料的非球面光学元件,材料的临界切削深度较小,加工过程材料的微破碎去除方式会降低非球面的表面质量。因此,在加工此类光学元件时,往往要用到超精密数控机床和在线检测设备。由于民用领域缺少专业设备和专业人员的指导,因而很难实现非球面的高效精磨。基于CAD/CAM软件的发展为民用领域加工非球面提供了可能。但在加工过程中,铣磨刀具上金刚石脱落以及后续误差补偿缺乏理论指导,制约了这一技术的发展。因此,本课题通过CAD/CAM软件在民用的数控机床上实现非球面的高效精磨。而针对这一过程存在的问题,本课题进行了以下几个方面的研究。针对市场上电镀金刚石刀具的金刚石脱落问题,本课题首先制备了细粒度的钎焊金刚石铣磨刀具。基于课题组的研究,本课题通过电镀-钎焊复合工艺进行制备细粒度钎焊金刚石铣磨刀具。通过优化电镀工艺参数,解决了细粒度金刚石在圆头刀具上分布均匀性的问题,通过钎料层厚度、加热电流、加热时间等钎焊工艺的探索,制备出了高出刃高度和金刚石把持力良好的钎焊金刚石刀具。最终解决了加工过程金刚石脱落问题。其次研究了K9光学玻璃的去除特性,通过去除率实验分析不同工艺参数对材料去除率的影响,为非球面的轮廓度误差做理论指导。通过三因素四水平的正交实验,对K9光学玻璃进行平面铣磨加工,分析了切削深度、主轴转速及进给速度对表面粗糙度和亚表面损伤的影响,确定了最佳铣磨工艺参数,为非球面精加工实验提供参数依据。分别用市场生产的电镀金刚石刀具和制备的钎焊金刚石刀具完成对K9光学玻璃的非球面加工,并针对误差规律从改变刀具形状和改变加工铣磨线速度的角度进行了补偿实验。实验结果表明:经过加工后的钎焊金刚石刀具上金刚石没有脱落,与市场上电镀金刚石刀具相比,能够满足非球面的重载荷加工。补偿加工后的非球面的面型精度较原有的加工结果有明显的改善。
[Abstract]:With the development of modern science and technology, the application of aspheric surfaces with good optical properties has become more and more extensive. The critical cutting depth of the material is small and the surface quality of the aspheric surface will be reduced by the removal of the micro-fragmentation of the material during the machining process. Therefore, when processing such optical elements, Ultra-precision CNC machine tools and on-line testing equipment are often used. Due to the lack of professional equipment and professional guidance in the civilian field, The development of CAD/CAM software makes it possible to process aspheric surface in civil field. However, in the process of milling and grinding tool diamond shedding and subsequent error compensation are lack of theoretical guidance. The development of this technology is restricted. Therefore, this subject realizes the high efficiency grinding of aspheric surface on the numerical control machine tool of civil use by CAD/CAM software. In view of the problems existing in this process, Aiming at the problem of diamond shedding of electroplated diamond cutting tools in the market, the fine grain brazing diamond milling and grinding tools are first prepared. In this paper, fine grain brazing diamond milling and grinding tools are prepared by electroplating and brazing composite process. By optimizing electroplating process parameters, the problem of uniform distribution of fine grain diamond on round end cutting tools is solved, and the thickness of brazing layer is adopted. Exploration of brazing process such as heating current, heating time, etc., Brazing diamond tools with high edge height and good diamond holding force were prepared. Finally, the problem of diamond shedding was solved. Secondly, the removal characteristics of K9 optical glass were studied. The influence of different process parameters on the material removal rate is analyzed through the removal rate experiment, which provides theoretical guidance for the contour error of aspherical surface. Through the orthogonal experiment of three factors and four levels, the K9 optical glass is ground by plane milling. The effects of cutting depth, spindle speed and feed speed on surface roughness and subsurface damage are analyzed, and the optimum milling and grinding process parameters are determined. In order to provide the parameter basis for the aspheric finishing experiment, the aspheric machining of K _ 9 optical glass was accomplished by using the electroplated diamond tools produced in the market and brazed diamond tools, respectively. According to the error law, the compensation experiment is carried out from the angle of changing the tool shape and changing the milling speed. The experimental results show that the diamond on the brazed diamond tool does not fall off after machining. Compared with the electroplated diamond tools on the market, it can satisfy the heavy load machining of aspheric surface, and the accuracy of the aspheric surface after compensation machining is obviously improved compared with the original machining results.
【学位授予单位】:华侨大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TG580.6
【相似文献】
相关期刊论文 前10条
1 ;非球面透镜模具的加工和测量系统[J];模具技术;1987年04期
2 尹韶辉;王锋;朱科军;陈逢军;;玻璃预制件形状对异形非球面透镜成型的影响[J];光电工程;2013年05期
3 倪颖;李建强;王毅;黄启泰;余景池;;一种高效率小口径非球面数控抛光方法[J];光学技术;2008年01期
4 孙立宏;日趋成熟的非球面加工技术[J];光机电信息;2004年06期
5 中田诚;彭惠民;;光电子学领域中精密模具的镜面加工[J];模具技术;1992年03期
6 罗建华;翁灿;沈龙江;蒋炳炎;;非球面透镜关键成形参数的虚拟实验优化[J];电加工与模具;2006年03期
7 张小兵;尹韶辉;朱科军;程逢军;余剑武;;基于结构松弛理论的非球面透镜退火模拟[J];兵器材料科学与工程;2013年05期
8 陈t,
本文编号:1592034
本文链接:https://www.wllwen.com/kejilunwen/jiagonggongyi/1592034.html