铜锆基非晶合金组织与力学性能的研究
本文选题:铜锆基非晶合金 切入点:显微组织 出处:《西安工业大学》2017年硕士论文 论文类型:学位论文
【摘要】:铜锆基非晶复合材料具有的高强度,高硬度等力学特性使其在航空航天、电子行业等领域具有极大的应用潜质。研究不同组元、不同成分对不同合金系组织与力学性能的影响具有重要意义。本文采用真空电弧熔炼-铜模吸铸、感应熔炼-铜模喷铸法制备了Cu-Zr-Al系合金和Cu-Zr-Al-Y系合金楔形样品,采用X射线衍射仪(XRD)对合金的组织结构进行分析,通过差示量热仪(DSC)研究不同元素添加对合金玻璃形成能力的影响,利用金相分析、扫描电镜分析(SEM)、透射电镜分析(TEM)和能谱分析组织形态和组织成分,通过室温压缩实验和显微硬度实验对合金系的力学性能进行测试,并对断口形貌进行分析。对Cu50-0.5xZr50-0.5xAlx(x=2,4,6 at.%)合金的组织和力学性能的研究表明:在此研究范围内,随着Al含量的增加,合金的玻璃形成能力逐渐增强,当Al的含量为6 at.%时,Cu47Zr47Al6合金具有较强的玻璃形成能力,其过冷液相区宽度达到61.38K,Trg和γ参数分别为0.5997和0.4077,并且液相线温度降至1168.75K。随着冷却速率的下降,非晶体中逐渐析出CuZr(B2)相、板条状CuZr(B19′)相和层片状的CuZr(Cm)马氏体相。适量Al的添加可以提高Cu50-0.5xZr50-0.5xAlx(x=2,4,6 at.%)合金的抗压强度,当加入量为4 at.%时效果最为明显。在3mm处和5mm处的抗压强度均随着Al元素的增加先提高后降低。在3mm处压缩时,Cu48Zr48Al4合金的抗压强度达到2296.0MPa,而且塑性变形量为0.68%。随着冷却速率的下降,从3mm到7mm处,合金Cu50-0.5xZr50-0.5xAlx(x=2,4,6 at.%)的显微硬度数值依次下降,其中在3mm处的显微硬度值最高,当x=4时,达到535.2HV。对(Cu47Zr47Al6)100-xYx(x=0.5,1,1.5,2,2.5 at.%)合金的研究表明:添加适量的Y可以提高合金的玻璃形成能力,且随着Y含量的增加,合金的玻璃形成能力先提高后下降。当Y的含量为2.0 at.%时,(Cu47Zr47Al6)98Y2合金的非晶形成能力最强,其过冷液相区宽度达到67.56K。随着冷却速率的下降,组织的变化为:完全非晶区→非晶+B2-CuZr相→非晶+B2-CuZr相+CuZr马氏体相。添加适量的Y可以提高其抗压强度,断裂方式仍为脆性断裂。随着Y含量的增加,合金的抗压强度值先增加后降低,当Y含量为2 at.%时,(Cu47Zr47Al6)98Y2合金的抗压强度达到最大值1967.9MPa。从3mm到7mm处,显微硬度数值依次下降。在3mm处,(Cu47Zr47Al6)98Y2合金的显微硬度值达到581.0HV。
[Abstract]:The high strength, high hardness and other mechanical properties of Cu-Zr based amorphous composites make them have great application potential in aerospace, electronics and other fields. The effect of different composition on the microstructure and mechanical properties of different alloy systems is significant. In this paper, the wedge-shaped samples of Cu-Zr-Al series and Cu-Zr-Al-Y series alloys were prepared by vacuum arc melting and copper mould suction casting, induction smelting and copper mold spray casting. The microstructure of the alloy was analyzed by X-ray diffractometer (XRD). The effect of different elements on the glass forming ability of the alloy was studied by differential calorimeter (DSC), and metallographic analysis was used. Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS) were used to analyze the microstructure and composition of the alloy. The mechanical properties of the alloy were tested by compression test at room temperature and microhardness test. The microstructure and mechanical properties of the alloy Cu50-0.5xZr50-0.5xZr50-0.5xAlxAXO2H2AXZO2AZO4AT.Y.) are studied. The results show that the glass-forming ability of the alloy increases with the increase of Al content in this study range, and the microstructure of the alloy increases with the increase of Al content. When Al content is 6 at.%, Cu47Zr47Al6 alloy has strong glass-forming ability. The width of supercooled liquid region is 0.5997 and 纬 parameter is 0.5997 and 0.4077 respectively, and the liquid line temperature drops to 1168.75K. with the decrease of cooling rate, CuZrB2) phase is gradually precipitated in amorphous. The compressive strength of Cu50-0.5xZr50-0.5xZr50-0.5xZr50-0.5xAlxOXO2AXUXUX 4AZO4AT. 6A) alloy can be improved by adding appropriate amount of Al to the laminated CuZrB19) phase and lamellar CuZrCm) phase, and the compressive strength of the alloy can be improved. The compressive strength of Cu48Zr48Al4 alloy increased first and then decreased with the increase of Al element at 3mm and 5mm. The compressive strength of Cu48Zr48Al4 alloy reached 2296.0MPa and the plastic deformation reached 0.68MPa when compressed at 3mm. The decrease in cooling rate, From 3 mm to 7 mm, the microhardness values of the alloy Cu50-0.5xZr50-0.5xAlxNix2A1XA2At.) decreased in turn, among which the microhardness at 3mm was the highest, reaching 535.2HV when x = 4:00. The study on the alloy Cu _ (47) Zr _ (47) Al _ (47) Al _ (6) Li _ (100) Y _ (0.51) (1. 522) at.showed that the glass-forming ability of the alloy could be improved by adding appropriate amount of Y, and the results were as follows: (1) the glass forming ability of the alloy could be improved by adding appropriate amount of Y to the alloy. With the increase of Y content, the glass-forming ability of the alloy first increased and then decreased. When the content of Y was 2.0 at.%, the amorphous forming ability of Cu47Zr47Al6H98Y2 alloy was the strongest, and the width of the supercooled liquid zone reached 67.56K. with the decrease of cooling rate, The change of microstructure is: completely amorphous region. 鈫扐morphous B 2-CuZr phase. 鈫扵he compressive strength of amorphous B2-CuZr phase CuZr martensite can be increased by adding appropriate amount of Y, and the fracture mode is still brittle fracture. With the increase of Y content, the compressive strength of the alloy increases first and then decreases. When the content of Y is 2 at.%, the compressive strength of Cu47Zr47Al6H98Y2 alloy reaches the maximum 1967.9MPa. From 3mm to 7mm, the microhardness value decreases in turn. At 3mm, the microhardness of Cu47Zr47Al6H98Y2 alloy reaches 581.0HV.
【学位授予单位】:西安工业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TG139.8
【参考文献】
相关期刊论文 前10条
1 陈蓉;吴安如;孙振起;;CuZr非晶中的马氏体相变研究进展[J];湖南工程学院学报(自然科学版);2015年03期
2 崔妍;黄平;王飞;;CuZr非晶的微结构和力学性能研究[J];中国科技论文;2015年04期
3 宋温丽;宋凯凯;刘增乾;李然;吴渊;吕昭平;;非晶合金的相变韧塑化[J];中国材料进展;2014年05期
4 郭古青;杨亮;张国庆;;Zr_(48)Cu_(45)Al_7大块金属玻璃的原子结构研究[J];物理学报;2011年01期
5 马国芝;陈鼎;陈振华;李玮;;深冷处理对Cu_(46)Zr_(46)Al_8非晶复合材料组织与性能的影响[J];材料热处理学报;2010年11期
6 胡壮麒;张海峰;;块状非晶合金及其复合材料研究进展[J];金属学报;2010年11期
7 张晓立;王金相;孙宇新;刘家骢;;块体非晶合金的应用与研究进展[J];科学技术与工程;2007年24期
8 贺自强;王新林;全白云;张羊换;赵小龙;王鑫;;非晶态合金的局域剪切变形与断裂机制[J];材料科学与工程学报;2007年01期
9 夏俊海,羌建兵,王英敏,王清,黄火根,董闯;Cu-Zr-Nb系铜基块体非晶合金的形成[J];金属学报;2005年09期
10 余鹏,白海洋,汤美波,王万录,汪卫华;具有优良玻璃形成能力添加Al的CuZr基大块金属玻璃[J];物理学报;2005年07期
相关博士学位论文 前4条
1 王远;添加元素对Cu-Zr基合金非晶形成能力及力学性能影响的研究[D];昆明理工大学;2014年
2 李春燕;锆铜基块体非晶合金的强韧化研究[D];兰州理工大学;2013年
3 陈季香;金属玻璃相关合金相的团簇式解析[D];大连理工大学;2012年
4 丁鼎;Zr-Cu基大块金属玻璃的形成、稳定性和力学性能研究[D];上海大学;2011年
相关硕士学位论文 前8条
1 孙博;CuZr基块体非晶复合材料的制备及其组织结构与性能的研究[D];南昌大学;2015年
2 唐任宏;块体金属玻璃的连续成型及其超塑性变形行为研究[D];大连理工大学;2015年
3 许洁;Cu-Zr基原位内生非晶复合材料的制备及其力学性能研究[D];北京理工大学;2015年
4 刘美;ZrCu块体非晶合金结构及力学性能的分子动力学模拟[D];燕山大学;2012年
5 周志兵;添加铍对ZrCuAl合金非晶形成能力及力学性能的影响[D];燕山大学;2012年
6 许宏伟;CuZrAl块体非晶合金结构与力学性能的影响因素研究[D];南京理工大学;2012年
7 张宇;过渡族元素添加对CuZr基金属玻璃耐蚀性的影响[D];东北大学;2011年
8 张玲;微合金化铜基块状非晶的制备及力学性能的研究[D];兰州理工大学;2008年
,本文编号:1619609
本文链接:https://www.wllwen.com/kejilunwen/jiagonggongyi/1619609.html