旋转磁极辅助磁粒研磨管内表面的试验研究
本文选题:磁粒研磨 切入点:管件 出处:《辽宁科技大学》2017年硕士论文
【摘要】:随着航空航天、石油、医疗等行业的迅猛发展,各行业对零件的精度要求越来越高。其中管件作为气体或液体等输送载体,在各行业中的作用尤为重要,由于原始管件在制作过程中,管件内表面会存在一些原始加工缺陷,如气孔、拉伤、裂纹等,在输送高压流体时会产生湍流从而造成喘振,致使整体装置的可靠性降低,影响装置的正常性能的使用,因此需要对管件内表面进行抛光来去除缺陷,提高内表面光洁度,提升管件的输送性能。由于磁粒研磨法具有柔性高、自锐性好、加工精度高等优点,利用磁粒研磨法抛光管内表面取得了良好的效果,但是其加工效率较低,通过大量的试验研究,通过在管内表面添加辅助磁极增大单位空间的磁感应强度,提升磁性磨粒对管件内表面的研磨压力,进而提高表面材料的去除量,提高加工效率。但是添加辅助磁极后磁性磨粒的翻滚、柔性等性能下降,表面易出现划伤,加工后表面质量不理想,因此提出了一种旋转磁极辅助磁粒研磨管内表面的加工方法,较好的解决了上述问题。本文以磁粒研磨的加工原理为基础,通过对磁性磨粒在加工过程中的受力及加工状态进行分析,得出影响磁粒研磨法的两个条件为磁性磨粒与管件内表面的相对运动方向及研磨时对管件内表面的压力,利用提高研磨压力为可行性手段,通过添加辅助磁极提高单位空间内的磁感应强度来增大研磨压力。但是由于添加辅助磁极后磁性磨粒的整体性能受到限制,加工后缺陷较多,因此通过分析表面材料对磁性磨粒的运动方式的影响,得出通过不断改变磁性磨粒相对管件内表面运动方向,从而达到对表面材料的均匀去除。通过分析振动辅助磁粒研磨管内表面的加工方法提出利用旋转磁极辅助磁粒研磨管内表面的加工方式,通过在管内的辅助磁极上添加一个沿管径向旋转运动,从而改变磁性磨粒团的整体磨削性能、改变单一的研磨轨迹,达到对管内表面的精密抛光效果。利用ADAMS虚拟样机模拟不同工艺参数下的研磨轨迹,分析在不同工艺参数下各轨迹的整体形貌,为试验提供理论依据。通过自行设计试验装置,验证了旋转磁极辅助磁粒研磨管内表面的试验可行性,通过对试验装置的重新优化设计,对比各参数下所研磨的管件内表面微观形貌,得出在不同加工状态下对管件内表面质量的影响。经试验得出:利用旋转磁极辅助磁粒研磨管内表面可以解决管件添加辅助磁极后由于压力过大等原因造成的表面划伤及加工后表面质量不理想的问题,通过对比试验的分析,得出利用磁粒研磨法加工管内表面时,研磨轨迹的不断交叉可以有效、快速的去除表面材料波峰,并且将缺陷扩展降低表面质量的影响较好的解决。利用旋转磁极辅助磁粒研磨管内表面可以大幅提高加工效率,表面缺陷基本去除,表面纹理分布均匀,表面质量较好。
[Abstract]:With the rapid development of aerospace, petroleum, medical and other industries, the precision of parts is required more and more.As a carrier of gas or liquid, pipe fittings play a particularly important role in various industries. Because of the original pipe fittings in the manufacturing process, there will be some original processing defects, such as pores, tensile injuries, cracks, etc.When conveying high pressure fluid, turbulence will produce surge, which will reduce the reliability of the whole device and affect the normal performance of the device. Therefore, it is necessary to polish the inner surface of the pipe to remove the defects and improve the finish of the inner surface.Improve the delivery performance of pipe fittings.Due to the advantages of high flexibility, good self-sharpness and high machining precision, the magnetic particle lapping method has achieved good results in polishing the inner surface of the tube, but its machining efficiency is relatively low.By adding auxiliary magnetic poles to the inner surface of the tube to increase the intensity of magnetic induction in unit space, the grinding pressure of magnetic abrasive particles on the inner surface of pipe fittings is raised, and the removal of surface materials and processing efficiency are improved.However, with the addition of auxiliary magnetic poles, the properties of magnetic abrasive particles are reduced, such as the flexibility, the surface is easily scratched, and the surface quality is not ideal after processing. Therefore, a method of grinding the inner surface of the tube with rotating magnetic pole is proposed.A better solution to the above problems.Based on the principle of magnetic abrasive grinding, this paper analyzes the force and processing state of magnetic abrasive in the process of processing.It is concluded that the two conditions affecting the magnetic abrasive grinding method are the relative movement direction of the magnetic abrasive particle and the inner surface of the tube and the pressure on the inner surface of the tube during grinding.The grinding pressure is increased by adding auxiliary magnetic poles to increase the intensity of magnetic induction in unit space.However, due to the limitation of the overall properties of magnetic abrasive particles after the addition of auxiliary magnetic poles and the more defects after processing, the influence of surface materials on the movement of magnetic abrasive particles is analyzed.It is concluded that the uniform removal of the surface material can be achieved by constantly changing the direction of magnetic abrasive particles moving relative to the inner surface of the tube fittings.By analyzing the machining method of the inner surface of the tube by vibration assisted magnetic particle grinding, the method of grinding the inner surface of the tube by using the rotating magnetic pole to grind the inner surface of the tube is put forward, and a rotating motion along the diameter of the tube is added to the auxiliary magnetic pole in the tube.Thus, the whole grinding performance of magnetic abrasive particle is changed, and the single grinding track is changed to achieve the precision polishing effect on the inner surface of the tube.The ADAMS virtual prototype is used to simulate the grinding trajectory under different process parameters, and the overall morphology of each locus under different process parameters is analyzed, which provides a theoretical basis for the experiment.The feasibility of testing the inner surface of the tube by rotating magnetic pole assisted magnetic particle grinding was verified by the self-designed test device. Through the re-optimization design of the test device, the microcosmic morphology of the internal surface of the abrasive tube was compared under various parameters.Through experiments, it is concluded that the internal surface of the tube can be grinded by rotating magnetic pole assisted magnetic particle, which can solve the problems of surface scratching caused by the addition of auxiliary magnetic pole and the unsatisfactory surface quality after machining after adding the auxiliary magnetic pole. The analysis of the contrast test is carried out.It is concluded that when the inner surface of pipe is machined by magnetic particle grinding, the continuous intersection of the grinding track can effectively remove the wave peak of the surface material and reduce the influence of the defect expansion to the surface quality.The internal surface of the tube can be greatly improved by using rotating magnetic pole assisted magnetic particle grinding. The surface defects are basically removed and the surface texture is evenly distributed and the surface quality is better.
【学位授予单位】:辽宁科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TG580.68
【参考文献】
相关期刊论文 前10条
1 韩冰;云昊;陈燕;应骏;;Al_2O_3陶瓷管内表面高效精密研磨试验研究[J];机械设计与制造;2016年01期
2 韩冰;刘立鑫;陈燕;;磁力研磨法加工弯管内表面的工艺参数优化[J];中国机械工程;2015年06期
3 陈燕;张广彬;韩冰;李昌;;磁力研磨法对陶瓷管内表面超精密抛光技术的试验研究[J];摩擦学学报;2015年02期
4 陈燕;张耀明;邓超;韩冰;;V形磁铁在SUS304管内表面抛光中的应用[J];机械工程学报;2014年15期
5 韩冰;邓超;陈燕;;球形磁铁在弯管内表面磁力研磨中的应用[J];摩擦学学报;2013年06期
6 丘平;乐敏;;石油化工装置中不锈钢钢管的应用[J];石油化工设备技术;2013年02期
7 赵鹏兵;史耀耀;宁立群;;整体叶盘高效强力复合铣A轴高精度控制技术研究[J];航空学报;2013年07期
8 郭忠达;王新海;阳志强;刘卫国;杭凌侠;陈智利;;磁流变抛光可塑性对彗尾u〉挠跋靃J];西安工业大学学报;2010年02期
9 邱腾雄;阎秋生;高伟强;;磁力研磨加工塑料模具钢的表面粗糙度特性研究[J];制造技术与机床;2008年04期
10 翟小兵;周锦进;;脉冲电化学光整加工技术的应用研究[J];制造技术与机床;2008年01期
相关博士学位论文 前2条
1 张桂香;雾化快凝磁性磨料制备及其磁力光整加工性能研究[D];南京航空航天大学;2012年
2 李俊烨;微小孔磨粒流抛光装置的研制与工艺研究[D];长春理工大学;2011年
相关硕士学位论文 前2条
1 刘有超;磨料流抛光装备技术研究[D];长春理工大学;2013年
2 李欣;弯管内表面抛光技术研究[D];长春理工大学;2009年
,本文编号:1723439
本文链接:https://www.wllwen.com/kejilunwen/jiagonggongyi/1723439.html