基于载荷控制的拐角铣削进给优化
发布时间:2018-04-09 12:14
本文选题:拐角铣削 切入点:载荷控制 出处:《机械工程学报》2016年19期
【摘要】:针对模具型腔拐角铣削过程,提出一种考虑刀具变形及铣削力变化的基于载荷控制的进给量优化方法。根据拐角的铣削中刀具与工件接触情况的不同,将铣削过程分为五个阶段,分别分析拐角铣削时刀具切削刃真实运动轨迹,建立拐角圆弧运动轨迹下瞬时切屑厚度模型,提高切屑厚度模型在拐角加工中的预测精度。修正铣削力预测模型,使其满足拐角加工过程不同阶段的要求。选取刀具变形量为约束条件,计算不同阶段的允许最大载荷,利用二分迭代法得到该载荷下对应的进给量值。考虑到数控机床的运动加速度限制,对得到的优化进给量值进行二次优化,以满足实际加工的要求。仿真结果表明,在进给优化后的拐角铣削过程中,载荷变化趋于平稳,加工时间缩短。进行拐角加工验证试验,数值仿真计算和试验测量结果表明,建立的铣削力模型能够很好地预测拐角铣削过程。所建立的优化模型为模具型腔的高精、高效加工提供理论支持。
[Abstract]:In view of the process of corner milling of die cavity, a method of feed optimization based on load control considering the change of tool deformation and milling force is proposed.According to the different contact between cutting tool and workpiece in corner milling, the milling process is divided into five stages. The real movement track of cutting edge in corner milling is analyzed, and the instantaneous chip thickness model under corner arc motion trajectory is established.The prediction accuracy of chip thickness model in corner machining is improved.The prediction model of milling force is modified to meet the requirements of different stages of corner machining.The allowable maximum load at different stages is calculated with the tool deformation as the constraint condition and the corresponding feed value under the load is obtained by using the bipartite iteration method.Considering the movement acceleration limitation of NC machine tool, the optimized feed value is re-optimized to meet the requirement of actual machining.The simulation results show that the load variation tends to be stable and the processing time is shortened in the process of corner milling after feed optimization.The results of numerical simulation and experimental measurement show that the established milling force model can predict the process of corner milling well.The optimized model provides theoretical support for high precision and high efficiency machining of die cavity.
【作者单位】: 哈尔滨理工大学机械动力工程学院;
【基金】:国家自然科学基金重点项目资助(51235003)
【分类号】:TG54
,
本文编号:1726402
本文链接:https://www.wllwen.com/kejilunwen/jiagonggongyi/1726402.html