薄壁件侧铣变形数值建模及实验研究
本文选题:薄壁件 + 热力耦合变形仿真 ; 参考:《哈尔滨工业大学》2017年硕士论文
【摘要】:薄壁类零件广泛应用于航空航天、汽车制造等领域。尤其是在航空航天领域,对薄壁类零件的加工精度有着极高的要求。由于薄壁类零件具有材料去除率高、结构刚性差等特点,在进行铣削加工时极易产生加工变形,这使得高精度薄壁类零件的加工制造成为了行业难点问题。本课题从减小薄壁件侧铣变形加工误差的角度出发,旨在通过对薄壁件侧铣变形规律和控制方法的研究,探索高精度薄壁类零件的制造方法,为实际加工生产和应用奠定基础。铣削力和铣削热是薄壁件侧铣变形的主要影响因素,针对这两种主要影响因素,本文通过分析对比几种经典的铣削力理论模型的优缺点,结合薄壁件侧铣加工方式的特点,建立了基于单位铣削力系数的力学模型。通过对比不同的温度场建模方式,分析了铣削过程中瞬时切屑厚度的变化规律,建立了基于Jeager正交切削移动热源带模型的薄壁件侧铣铣削温度预测模型,并利用Matlab模拟了铣削温度场的变化过程。通过铣削加工正交实验测定出不同铣削参数下的铣削力、铣削热、参考点变形量和已加工工件表面误差,根据实验数据计算出铣削力和铣削热模型中的相关系数,并将理论值与实验值进行对比分析,验证了理论模型的有效性。分析了不同铣削参数与铣削变形量之间内在联系,得出了较好的铣削参数组合。通过ANSYS参数化编程的方法编写了集几何建模、刀具走刀、材料去除于一体的薄壁件侧铣动态仿真程序,建立了侧铣变形分析模型。通过合理的假设和简化建立了薄壁件侧铣变形有限元分析模型,对比了只施加力载荷和热力耦合作用时薄壁件的变形规律,将仿真值与实验值进行对比,验证了薄壁件侧铣变形数值模拟的有效性。利用薄壁侧铣变形数值模拟的数据,建立了基于BP神经网络的变形预测模型和铣削参数优化模型。运用Matlab编写了BP神经网络薄壁件侧铣变形预测程序,用实验数据和已建立的BP神经网络变形预测模型,建立了基于遗传算法的铣削参数优化模型。对铣削参数进行了优化,通过铣削参数优化实验验证了优化模型的有效性。
[Abstract]:Thin-wall parts are widely used in aerospace, automobile manufacturing and other fields. Especially in the field of aeronautics and astronautics, the machining accuracy of thin-wall parts is very high. Due to the characteristics of high material removal rate and poor structural rigidity, thin-walled parts are easy to produce machining deformation in milling, which makes the manufacture of high-precision thin-walled parts become a difficult problem in the industry. From the point of view of reducing the machining error of side milling deformation of thin-walled parts, this paper aims at exploring the manufacturing methods of high-precision thin-walled parts by studying the law and control methods of side-milling deformation of thin-walled parts, which will lay a foundation for practical processing, production and application. Milling force and milling heat are the main influencing factors of side milling deformation of thin-walled parts. In view of these two main influencing factors, this paper analyzes and compares the advantages and disadvantages of several classical theoretical models of milling force, combined with the characteristics of side milling of thin-walled parts. A mechanical model based on unit milling force coefficient is established. By comparing different modeling methods of temperature field, the variation law of instantaneous chip thickness in milling process is analyzed, and the prediction model of side milling temperature of thin-walled parts based on Jeager orthogonal cutting moving heat source belt model is established. The change process of milling temperature field is simulated by Matlab. The milling force, milling heat, reference point deformation and the surface error of the machined workpiece are determined by orthogonal milling experiment. The milling force and the correlation coefficient in the milling heat model are calculated according to the experimental data. The validity of the theoretical model is verified by comparing the theoretical value with the experimental value. The internal relationship between different milling parameters and milling deformation is analyzed, and a better milling parameter combination is obtained. A dynamic simulation program for side milling of thin-walled parts is developed by means of ANSYS parameterized programming, which integrates geometric modeling, tool walking and material removal, and an analysis model of side milling deformation is established. Through reasonable assumption and simplification, the finite element analysis model of side milling deformation of thin-walled parts is established, and the deformation law of thin-walled parts under the coupling of force and heat is compared, and the simulation value is compared with the experimental value. The effectiveness of numerical simulation of side milling deformation of thin wall parts is verified. The deformation prediction model and milling parameter optimization model based on BP neural network are established based on the numerical simulation data of thin-walled side milling deformation. A BP neural network program for predicting the side milling deformation of thin-walled parts is compiled by using Matlab. Based on the experimental data and the established BP neural network deformation prediction model, the optimization model of milling parameters based on genetic algorithm is established. The milling parameters are optimized and the validity of the optimization model is verified by the experiment of milling parameters optimization.
【学位授予单位】:哈尔滨工业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TG54
【相似文献】
相关期刊论文 前10条
1 宫文强,冷长庚,刘立和;辅助支承在薄壁件加工中的应用[J];机械制造;2004年01期
2 李文;一种高精度环形薄壁件工艺方法的探讨[J];机械工人.冷加工;2004年04期
3 袁春晓,冯晓露;一种校直磨削加工中薄壁件变形的方法[J];机械制造;2004年12期
4 张同保;苏晓佳;刘玉卿;侯涛;;防止薄壁件深冲棱子的工艺措施[J];金属热处理;2007年09期
5 陈蔚芳;楼佩煌;陈华;;薄壁件加工变形主动补偿方法[J];航空学报;2009年03期
6 汪涛;贾爱青;;大型高精度薄壁件的以车代磨试验[J];金属加工(冷加工);2009年04期
7 石明良;;巧卸薄壁件[J];机械工人技术资料;1975年12期
8 高志祥;谈谈薄壁件的定义域[J];航空标准化;1982年04期
9 吴鸣玉;;薄壁件纵焊缝焊接机[J];机械设计与制造;1990年02期
10 尹三元,张喜春;大直径薄壁件的磨削[J];机械工人.冷加工;1991年11期
相关会议论文 前10条
1 万秀屏;谭薇;范鑫;冯欣明;文宝林;;某大型薄壁件车加工变形质量控制[A];第九届沈阳科学学术年会论文集(信息科学与工程技术分册)[C];2012年
2 李燕;董爱娟;;加工薄壁件安装面工艺探讨[A];2009全国机电企业工艺年会<厦工杯>工艺征文论文集[C];2009年
3 廖勇军;;薄壁件网格技术及计算经济性研究[A];2013中国汽车工程学会年会论文集[C];2013年
4 韩晓光;张凤英;翟婷婷;;空间曲面薄壁件柔性装配定位系统设计与实现[A];第十五届中国科协年会第13分会场:航空发动机设计、制造与应用技术研讨会论文集[C];2013年
5 彭昌永;高福全;范如源;;铝合金薄壁件的点焊及表面处理[A];中国工程物理研究院科技年报(2003)[C];2003年
6 栾宇;解润锋;;大型薄壁件-转轮室精加工分析[A];第七届(2009)中国钢铁年会论文集(下)[C];2009年
7 刘宇;傅戈雁;石世宏;王晨;;光内送粉激光熔覆堆积扭曲薄壁件工艺参数的控制[A];第15届全国特种加工学术会议论文集(下)[C];2013年
8 曹栩;骆合力;李尚平;张喜娥;冯涤;;Ni_3Al基合金薄壁件熔模精铸工艺研究[A];动力与能源用高温结构材料——第十一届中国高温合金年会论文集[C];2007年
9 梁朝坚;;铝合金薄壁件铸件变形研究分析[A];2009重庆市铸造年会论文集[C];2009年
10 丁春艳;杨振国;;聚碳酸酯薄壁件分层失效机制的研究[A];2007年中国机械工程学会年会论文集[C];2007年
相关博士学位论文 前10条
1 陈W,
本文编号:1803801
本文链接:https://www.wllwen.com/kejilunwen/jiagonggongyi/1803801.html