当前位置:主页 > 科技论文 > 铸造论文 >

基于COMSOL的电沉积及光电复合沉积的仿真研究

发布时间:2018-05-03 06:15

  本文选题:光电复合沉积 + 强力搅拌 ; 参考:《江苏大学》2017年硕士论文


【摘要】:伴随着微机电系统(MEMS)的发展,对于微小复杂零件制造的需求不断提升。微细加工技术作为实现微小零件制造的关键技术引起了国内外学者的极大关注。微细电沉积加工技术具有制造精度高、工艺柔性好、成本低等优点,但由于存在沉积速率慢、沉积定域性差、沉积质量差等缺陷,制约了其发展和应用。激光电化学光电复合沉积技术是将激光能量与电化学能量有效结合的多能场复合沉积技术,不仅能提高沉积速率,还能改善沉积定域性和沉积质量。由于激光电化学复合沉积是一个复杂的多物理场耦合过程,涉及到电场、温度场和流场的耦合,采用传统方法很难对该复杂多物理场耦合作用的加工机理进行深入研究。因此为了分析激光对电化学沉积速率的促进机理,本文利用有限元分析软件,以沉积速率为研究重点对电沉积及光电复合沉积过程进行了有限元仿真。首先对电沉积速率进行了仿真研究,并针对电沉积过程中沉积速率难以确定的问题,建立了计算沉积速率的神经网络模型;再分别对激光的热效应、强力搅拌效应以及应力冲击效应进行仿真研究,模拟了激光作用时的温度、流场及应力分布;最后对激光电化学复合沉积加工中的电沉积电场、温度场及流场进行耦合模拟,研究了激光的热效应和强力搅拌效应对电化学沉积速率的影响。其主要研究内容如下:1.研究了电化学沉积机理以及激光产生的热效应、强力搅拌效应和应力冲击效应对电沉积反应的强化机理;建立了微细电沉积的仿真模型,并对微细电沉积中影响沉积速率较大的电势差、沉积离子浓度、氢离子浓度、电极间隙、温度和流速等工艺参数分别进行了仿真研究,着重研究了离子匮乏区的形成及其对沉积速率的影响。2.建立了可靠的计算沉积速率的神经网络模型,并结合遗传算法,实现了对沉积速率的定量分析和参数优化;设计了沉积速率参数优化的计算软件,降低了程序的使用难度,并为今后的电沉积加工研究提供了软件基础。3.建立了激光电化学复合沉积的物理模型、数学模型和有限元模型,研究了激光作用下的温度、流场及应力分布;对激光电化学复合沉积过程中的电沉积电场、温度场和流场进行了耦合仿真研究,研究了激光作用对传质流量、浓度及沉积高度的影响。对微细电沉积速率的仿真研究及其神经网络建模,深化了对沉积机理的研究,并解决了沉积速率难以确定的问题。对电沉积及光电复合沉积的仿真研究,有助于更好的理解光电复合沉积机理。模拟激光电化学的多场耦合作用效果能有效地利用多场耦合的有益效应进一步提高沉积速率、沉积定域性及沉积质量,有力推动了光电复合沉积技术的进一步发展。
[Abstract]:With the development of MEMS (MEMS), the demand for micro and complex parts manufacturing is increasing. As a key technology to realize the manufacture of micro-parts, micro-machining technology has attracted great attention of scholars at home and abroad. Micro-electrodeposition technology has the advantages of high manufacturing precision, good flexibility and low cost. However, the development and application of micro-electrodeposition technology are restricted by the shortcomings of low deposition rate, poor deposition localization and poor deposition quality. Laser Electrochemical Electrochemical Composite deposition (LECO) is a multi-energy field composite deposition technology which combines laser energy with electrochemical energy effectively. It can not only improve deposition rate but also improve the localization and quality of deposition. Because the laser electrochemical composite deposition is a complex multi-physical field coupling process involving the coupling of electric field temperature field and flow field it is difficult to study the machining mechanism of the complex multi-physical field coupling by traditional methods. Therefore, in order to analyze the mechanism of laser promoting electrochemical deposition rate, the finite element simulation of electrodeposition and optoelectronic composite deposition process is carried out by using finite element analysis software and focusing on deposition rate. First of all, the electrodeposition rate is simulated, and a neural network model is established to calculate the deposition rate, which is difficult to determine in the electrodeposition process. The strong stirring effect and stress shock effect are simulated, and the temperature, flow field and stress distribution are simulated. Finally, the electrodeposition electric field, temperature field and flow field in laser electrochemical composite deposition are simulated. The influence of laser thermal effect and strong stirring effect on electrochemical deposition rate was studied. The main research contents are as follows: 1: 1. The mechanism of electrochemical deposition, the thermal effect produced by laser, the strengthening mechanism of strong stirring effect and stress shock effect on electrodeposition reaction were studied, and the simulation model of micro-electrodeposition was established. The process parameters, such as potential difference, ion concentration, hydrogen ion concentration, electrode gap, temperature and flow rate, which affect the deposition rate in micro electrodeposition are simulated, respectively. The formation of ion deficient region and its influence on deposition rate. A reliable neural network model for calculating deposition rate is established, and the quantitative analysis and parameter optimization of deposition rate are realized by combining genetic algorithm, and the calculation software of deposition rate parameter optimization is designed, which reduces the difficulty of using the program. It also provides the software foundation for the future research of electrodeposition processing. 3. The physical model, mathematical model and finite element model of laser electrochemical composite deposition are established, and the temperature, flow field and stress distribution under laser irradiation are studied. The effects of laser on mass transfer rate, concentration and deposition height are studied by coupling simulation of temperature field and flow field. The simulation study of micro-electrodeposition rate and its neural network modeling have deepened the study of deposition mechanism and solved the problem that the deposition rate is difficult to determine. The simulation study of electrodeposition and photoelectric composite deposition is helpful to better understand the mechanism of photovoltaic composite deposition. The multi-field coupling effect of simulated laser electrochemistry can effectively utilize the beneficial effect of multi-field coupling to further improve deposition rate, deposition localization and deposition quality, and promote the further development of optoelectronic composite deposition technology.
【学位授予单位】:江苏大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TG66

【参考文献】

相关期刊论文 前10条

1 刘皋;张朝阳;黄磊;姜雨佳;聂昕;陆海强;庄鸿武;;基于神经网络遗传算法的激光熔钎焊参数优化[J];光学技术;2016年05期

2 戴春爽;李丽;朱翠雯;;超声场作用对电沉积Cu及Cu-TiB_2性能的影响[J];现代制造工程;2016年04期

3 徐凌羿;张勇斌;陈金明;龙飞;杨正杰;;微细电沉积加工技术浅析及实验研究[J];电加工与模具;2016年S1期

4 王书红;张换平;杜慧;侯绍刚;郑勇;李安林;;金属电沉积技术的发展及应用[J];应用化工;2015年04期

5 兰龙;谭俊;吴迪;黄曾辉;曾其彬;;喷射电沉积Ni及Ni-ZrO_2复合镀层的表面形貌和硬度[J];材料导报;2014年16期

6 王颖;康敏;;基于COMSOL的电喷镀阳极喷嘴设计研究[J];中国机械工程;2014年09期

7 秦建新;陈超;任孟德;林峰;王进保;;赫尔槽电沉积阴极电流密度与电势分布数值模拟计算[J];电镀与涂饰;2014年07期

8 印洁;张朝阳;曾永彬;李中洋;秦昌亮;;激光电化学复合加工的温度场与电场模拟研究[J];激光与光电子学进展;2013年12期

9 贾卫平;贾振元;苗斌;吴蒙华;吴承原;;垂直磁场作用下电沉积数值分析与实验[J];大连理工大学学报;2013年05期

10 贾志军;马洪运;吴旭冉;廖斯达;王保国;;电化学基础(Ⅴ)——电极过程动力学及电荷传递过程[J];储能科学与技术;2013年04期

相关博士学位论文 前1条

1 王颖;喷射电沉积镍磷合金电化学行为及性能研究[D];南京农业大学;2014年

相关硕士学位论文 前6条

1 鞠阳;稀土电解槽流场-电场耦合数值模拟[D];内蒙古科技大学;2015年

2 王澍龙;脉冲激光加热辅助微细切削ZrO_2陶瓷[D];南京航空航天大学;2015年

3 聂时振;微电铸的工艺技术研究[D];中国科学技术大学;2009年

4 夏小霞;铝电解槽内电解质流场的数值模拟研究[D];中南大学;2005年

5 张艳;基于BP算法和遗传算法的自适应噪声抵消器[D];吉林大学;2004年

6 熊毅;纳米晶块体镍的喷射高速电沉积及其微观结构研究[D];燕山大学;2001年



本文编号:1837333

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/jiagonggongyi/1837333.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户c8928***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com