氯化钠介质中铜复合缓蚀剂性能及缓蚀机理研究
发布时间:2018-05-07 11:02
本文选题:铜 + 缓蚀剂 ; 参考:《江西理工大学》2016年硕士论文
【摘要】:本文通过失重实验、扫描电子显微镜、动电位极化曲线检测、交流阻抗谱测试等手段研究苯并三氮唑(BTA)、三乙醇胺(TEA)和硅酸钠单独使用时对铜在5%氯化钠溶液中腐蚀行为的影响。在此基础上,将BTA和TEA、BTA和硅酸钠组成复合缓蚀剂,研究总浓度变化和复配比变化对缓蚀作用的影响规律。通过正交试验确定BTA、TEA和硅酸钠三者组成复合缓蚀剂的较优组合配方,并且分析环境温度、复合缓蚀剂总浓度以及浸泡时间对缓蚀作用的影响规律。研究结果表明:(1)在含有5%氯化钠的介质中,随着BTA含量增加,缓蚀效率提高;TEA对铜在5%氯化钠介质中的腐蚀行为没有抑制作用,铜的腐蚀速率随着TEA含量增加而逐渐增大;硅酸钠对铜在5%氯化钠介质中腐蚀行为的影响与硅酸钠的含量有关,当含量低于50mg/L会促进铜的腐蚀,含量高于100mg/L则能够产生缓蚀作用。(2)BTA与TEA、BTA与硅酸钠之间均产生了协同作用。总浓度20mg/L,BTA与TEA组成复合缓蚀剂的较佳复配比是1:4,此条件下的腐蚀电流密度是2.53×10-6A/cm2,缓蚀效率ηI是70.14%;而在总浓度为50mg/L以及100mg/L时的较佳复配比是4:1,此条件下的腐蚀电流密度分别是5.2×10-7A/cm2和7.45×10-8A/cm2,对应的缓蚀效率ηI分别是93.86%和99.12%。BTA与硅酸钠组成的复合缓蚀剂在总浓度为20mg/L、50mg/L以及100mg/L时的较佳复配比均是4:1,此条件下的腐蚀电流密度分别是2.53×10-6A/cm2、1.04×10-7A/cm2、7.45×10-8A/cm2,对应的缓蚀效率ηI分别是70.18%、87.78%、99.13%。(3)BTA、TEA以及硅酸钠组成复合缓蚀剂的较优组合为BTA50mg/L、硅酸钠500mg/L和TEA300mg/L。极化曲线数据表明,此复合缓蚀剂能够同时抑制阳极反应和阴极反应,属于混合抑制型缓蚀剂。交流阻抗数据表明,铜在氯化钠介质中的腐蚀受到电荷传递过程和扩散过程决定,此复合缓蚀剂通过在铜表面形成保护膜,阻碍铜腐蚀过程中的电荷转移过程,电荷传递电阻由1161Ω增大到27506Ω,产生保护作用。(4)综合考虑使用量以及保护效果,复合缓蚀剂C(BTA20mg/L、硅酸钠300mg/L、TEA20mg/L)既可以满足使用要求又能够节约成本。此复合缓蚀剂在铜表面的吸附服从Langmuir吸附等温模型,吸附是一个自发的过程且物理吸附和化学吸附同时存在。在28℃~65℃范围内,温度越高,保护作用越差;在0.2C~C(C代表由BTA20mg/L、硅酸钠300mg/L、TEA20mg/L组成的复合缓蚀剂;0.2C代表将C稀释成0.2倍后的复合缓蚀剂)范围内,随着复合缓蚀剂总量增加,铜的腐蚀速率逐渐降低,缓蚀效率则逐渐增加;温度为35℃,浸泡时间在0.2h~3h范围内,极化曲线变化幅度不大,复合缓蚀剂的性质稳定,对铜在氯化钠介质中的腐蚀产生保护作用。
[Abstract]:The effects of benzotriazole BTAA, triethanolamine tea) and sodium silicate on the corrosion behavior of copper in 5% sodium chloride solution were studied by means of weightlessness test, scanning electron microscope, potentiodynamic polarization curve detection and AC impedance spectroscopy. On this basis, the composite corrosion inhibitor composed of BTA, tea BTA and sodium silicate was used to study the effect of the total concentration and the mixture ratio on the corrosion inhibition. The optimum combination formula of BTATEA and sodium silicate was determined by orthogonal test, and the influence of environment temperature, total concentration of composite inhibitor and soaking time on the corrosion inhibition was analyzed. The results show that in the medium containing 5% sodium chloride, the corrosion inhibition efficiency increases with the increase of BTA content. Tea does not inhibit the corrosion behavior of copper in 5% sodium chloride medium. The corrosion rate of copper increases with the increase of TEA content. The effect of sodium silicate on the corrosion behavior of copper in 5% sodium chloride medium is related to the content of sodium silicate. When the content of sodium silicate is lower than 50mg/L, the corrosion of copper will be promoted, and the corrosion inhibition effect can be produced when the content of sodium silicate is higher than that of 100mg/L, and the synergism between TEABTA and sodium silicate can be obtained when the content of sodium silicate is higher than that of 100mg/L. The optimum combination ratio of 20 mg / L BTA and TEA is 1: 4, the corrosion current density is 2.53 脳 10 ~ (-6) A / cm ~ (2), the corrosion inhibition efficiency 畏 _ I is 70.14 and the better ratio is 4: 1 when the total concentration is 50mg/L and 100mg/L, and the corrosion current is dense under this condition. The corrosion inhibition efficiency 畏 I is 93.86% and the ratio of the composite inhibitor composed of 99.12%.BTA and sodium silicate is 20 mg / L 50 mg / L and 100mg/L is 4: 1, respectively. The corrosion current density is 2.53 脳 10-6 A / cm _ 2 1.04 脳 10 ~ (-7) A 路cm ~ (-2) 路cm ~ (2), respectively, and the optimum ratio is 4: 1 at the total concentration of 20 mg / L ~ (50) mg / L ~ (-1) and 100mg/L, respectively. The corrosion current density is 2.53 脳 10 ~ (-6) A / cm ~ (-2) / cm ~ (2), and 7.45 脳 10 ~ (-8) A / cm ~ (-2) 路cm ~ (-2) respectively. The corrosion inhibition efficiency 畏 I is 70.18, 87.78 and 99.133.The optimum combination of BTA 50 mg / L, sodium silicate 500mg/L and tea 300 mg / L is the optimum combination of BTA 50 mg / L, sodium silicate 500mg/L and tea 300 mg / L, respectively. The polarization curve data show that the composite inhibitor can inhibit both anodic and cathodic reactions and is a mixed inhibitor. Ac impedance data show that the corrosion of copper in sodium chloride medium is determined by the charge transfer process and diffusion process. The composite corrosion inhibitor hinders the charge transfer process of copper corrosion by forming a protective film on the surface of copper. The charge transfer resistance is increased from 1161 惟 to 27506 惟, which has protective effect.) considering the usage and protection effect, the composite corrosion inhibitor CnBTA 20mg / L, sodium silicate 300mg / L tea 20mg / L) can meet the requirements and save cost. The adsorption isotherm of the complex corrosion inhibitor on copper surface is from the Langmuir adsorption isotherm model. The adsorption is a spontaneous process and the physical adsorption and the chemical adsorption exist at the same time. In the range of 28 鈩,
本文编号:1856664
本文链接:https://www.wllwen.com/kejilunwen/jiagonggongyi/1856664.html