高洁净度TiAl合金及其纳米复合材料的制备,组织和力学性能
本文选题:高铌TiAl合金 + 真空磁悬浮熔炼 ; 参考:《北京科技大学》2015年博士论文
【摘要】:TiAl合金的潜在应用领域主要为高温和循环载荷下的结构部件,比如航空发动机低压涡轮叶片、汽车增压涡轮器等。随着Ti-48Al-2Cr-2Nb(除特殊标注外,全文都为原子分数)合金在美国波音787客机GenX发动机的应用,国内外对于TiAl合金的研究和应用又产生了新一轮的热潮。无论是开发新型的铸造TiAl合金还是变形TiAl合金,提高合金的洁净度都有着重要意义。因此,本文的主要研究内容针对高洁净度熔炼高铌TiAl合金的真空磁悬浮熔炼过程进行了系统的研究,包括制备工艺、成分-组织均匀性和力学性能;还借助于真空磁悬浮熔炼的电磁搅拌作用以搅拌-铸造法制备了TiAl基纳米复合材料,并研究了纳米颗粒对TiAl合金组织和力学性能的影响。本文的主要结论和创新点如下:(1)在真空磁悬浮熔炼高铌TiAl合金时,不当的布料方式会导致原料搭桥和热爆损失,影响熔炼过程以及合金成分的准确性。通过坩埚内Al上Ti下的布料方式可以有效避免原料搭桥的产生。热爆的产生是由于气体和Al蒸气的压力大于原料静压力而导致的,通过减少坩埚内海绵钛的质量和提高炉内压力可以有效抑制热爆的产生。(2)通过优化的真空磁悬浮两次熔炼工艺,高铌TiAl合金铸锭的成分组织均匀。在第二次熔炼中采取了抽真空-熔化-充氩气-熔炼的工艺制度使合金含O量降低到300ppm。(3)在真空熔炼高铌TiAl合金时,合金的烧损主要来源于海绵钛的飞溅损失。尽管Al具有较高的蒸气压,但足通过充Ar使炉内达到500Pa以上可以有效降低Al的挥发损失。(4)通过对锭型的优化设计,促进了高铌TiAl合金在锭型内的顺序凝吲。铸锭中集中缩孔分布在冒口处,气缩孔基本消除,有效地减小了分散缩孔的体积。通过铸锭温度温度场的模拟设计出最佳的锭型尺寸为:锭型壁厚20mm、锭身斜度4.2。、锭身高径比3.3、冒口斜度30。。(5)经过真空悬浮熔炼并浇注的高铌TiAl合金铸锭,其组织为均匀的等轴近片层组织。降低Al含量和添加B元素都使片层团尺寸减小。虽然B细化作用最为显著,然而大量硼化物的析出损害了材料的室温拉伸力学性能。(6)当高铌TiAl-B合金在α单相区进行热处理时,铸锭中出现了粗晶环。粗品环的形成与B的含量(0.5%)和铸锭凝固时的冷却速率有关。降低B含量和提高铸锭的冷却速率都会使粗品环的宽度增大。粗晶环的形成是因为B含量大于某一临界值时凝固前沿B导致的成分过冷和温度过冷共同作用使整个铸锭硼化物的分布密度不同,使得α单相区热处理时硼化物对α晶粒的钉扎作用不同。并且高温时弯曲板条状的硼化物转变为针状的硼化物,这种转变也削弱了对α晶粒的钉扎作用,这两种硼化物都富集了Nb元素并且都具有相同的B27正交结构。(7)通过搅拌-铸造法成功制备了TiAl基纳米复合材料,试验的纳米陶瓷颗粒有α-Al2O3、γ-Al2O3、TiO2、Y2O3、TiC,纳米金属颗粒有W和Mo。其中α-Al2O3、TiO2、TiC和W纳米颗粒在经过电磁搅拌后都可以在TiAl基体中实现均匀分散的分布,根据其分布判断出这几种颗粒的润湿性大小为:WTiO2TiCα-Al203。(8)纳米颗粒在TiAl合金凝固中起到了异质核心的作用,因此细化了初生β枝晶,然而纳米氧化物陶瓷颗粒却使片层团组织粗化,其主要原因是O的溶解稳定了高温α相,促进了α晶粒的快速生长,进而转变为粗大的片层团。当纳米TiC的添加量大于1wt.%时,基体中有Ti2AlC的析出并细化了片层团组织,同时C的溶解减小了7和a2片层间距。(9)纳米颗粒的添加使TiAl合金的室温和高温维氏硬度都有一定提高,硬度提高最显著的是纳米TiC和纳米W,然而TiC却损害了材料的室温断裂韧性,只有纳米W颗粒的添加即提高了基体的室温和高温硬度又提高了基体的断裂韧性,达到40MPa/m1/2。
[Abstract]:The potential applications of TiAl alloys are the structural components under high temperature and cyclic loading, such as aero engine low pressure turbine blades, automotive turbocharger, and so on. The application of Ti-48Al-2Cr-2Nb (the full text for atomic fraction) alloy to the GenX engine of the Boeing 787 aircraft in the United States and the study of TiAl alloys at home and abroad. There is a new round of upsurge of application and application. It is of great significance to develop new cast TiAl alloy or deformed TiAl alloy to improve the cleanliness of the alloy. Therefore, the main research content of this paper is to systematically study the vacuum magnetic levitation process of Gao Jie's pure melting high niobium TiAl alloy, including the preparation process, The composition homogeneity and mechanical properties of TiAl based nanocomposites were also prepared by the stirring casting process in vacuum magnetic suspension melting. The effects of nanoparticles on the microstructure and mechanical properties of TiAl alloys were studied. The main conclusions and innovations of this paper were as follows: (1) high niobium TiAl in vacuum maglev smelting. In gold, improper material will lead to bridge and thermal explosion loss, influence melting process and the accuracy of alloy composition. Through the material under Al Ti in the crucible, the production of bridge can be avoided effectively. The thermal explosion is caused by the pressure of gas and Al steam greater than the static pressure of the raw material, by reducing the crucible inside the crucible. The quality of the titanium sponge and the increase of the pressure in the furnace can effectively suppress the thermal explosion. (2) the composition of the high niobium TiAl alloy ingot is homogeneous through the optimized two smelting process of vacuum magnetic levitation. In the second smelting process, the vacuum melting, argon filling and melting process system has been adopted to reduce the content of O to 300ppm. (3) in vacuum smelting. When high niobium TiAl alloy, the burning loss of the alloy is mainly due to the spatter loss of titanium sponge. Although Al has high vapor pressure, it can effectively reduce the volatilization loss of Al by filling up to 500Pa in the furnace by filling Ar. (4) through the optimum design of the ingot type, the sequential indation in the ingot type of high niobium TiAl gold is promoted. The concentrated shrinkage of the ingot is concentrated. In the riser, the air shrinkage cavity is basically eliminated and the volume of the dispersed shrinkage cavity is effectively reduced. The optimum ingot size is designed by the simulation of the temperature and temperature field of ingot. The ingot thickness 20mm, the ingot body slope 4.2., the ingot height ratio 3.3, the riser slope 30.. (5) through the vacuum suspension melting and pouring of the high niobium alloy ingot are uniform. The reduction of Al content and the addition of B elements reduce the size of the lamellar mass. Although the B refinement is the most significant, the precipitation of a large number of boride damages the tensile mechanical properties of the material at room temperature. (6) when the high niobium TiAl-B alloy has been heat-treated in the alpha single-phase region, the coarse ring is formed in the ingot. The formation of the coarse ring and B The content (0.5%) is related to the cooling rate of the ingot solidification. Reducing the B content and increasing the cooling rate of the ingot will increase the width of the ring. The formation of the roughing ring is due to the combination of the component overcooling and the temperature overcooling caused by the B content greater than a critical value in the solidification front B, which makes the distribution density of the boride in the whole ingot different. The boride has different pinning effects on the alpha grain during the heat treatment of the alpha single phase region. And at high temperature, the boride of the strip shape of the curved plate turns into a needle like boride, which also weakens the pinning effect on the alpha grain. These two borates have enriched the Nb elements and all have the same B27 orthogonal structure. (7) success by the agitation casting method. TiAl based nanocomposites have been prepared. The tested nano ceramic particles are alpha -Al2O3, gamma -Al2O3, TiO2, Y2O3, TiC. The nano particles have W and Mo. in which the alpha -Al2O3, TiO2, TiC and W nanoparticles can be distributed uniformly in the matrix after electromagnetic stirring, and the wettability of these particles is judged according to their distribution. WTiO2TiC alpha -Al203. (8) nanoparticles play the role of heterogeneous core in the solidification of TiAl alloy, thus refining the primary beta dendrites. However, the nano oxide ceramic particles make the lamellar tissue coarser. The main reason is that the dissolution of O has stabilized the high temperature alpha phase and promoted the rapid growth of the alpha grain, and then changed into a coarse lamellar mass. When the addition of nano TiC is greater than 1wt.%, the matrix is precipitated by Ti2AlC and the lamellar tissue is refined. At the same time, the dissolution of C is reduced by 7 and A2 layer spacing. (9) the addition of nano particles makes the hardness of the TiAl alloy at room temperature and high temperature Vivtorinox to a certain extent, and the most notable is the nano TiC and nano W. However, TiC has damaged the material. At room temperature fracture toughness, only nano W particles increased the hardness of the substrate at room temperature and high temperature, and increased the fracture toughness of the matrix, reaching 40MPa/m1/2.
【学位授予单位】:北京科技大学
【学位级别】:博士
【学位授予年份】:2015
【分类号】:TG146.2;TB33
【相似文献】
相关期刊论文 前10条
1 ;THE STRUCTURE CHANGE OF γ-TiAl IRRADIATED BY 50keV XENON IONS AT ROOM TEMPERATURE[J];Acta Metallurgica Sinica(English Edition);2001年04期
2 吴引江;制造TiAl薄板的新方法[J];钛工业进展;2001年05期
3 ;Distribution of Nb atom in the TiAl+Nb system[J];Rare Metals;2001年01期
4 ;MEAM Potential with Angular Dependence for TiAl[J];Rare Metals;2001年01期
5 陈玉勇 ,孔凡涛 ,田竞 ,陈子勇 ,肖树龙;Recent developments in engineering γ-TiAl intermetallics[J];Transactions of Nonferrous Metals Society of China;2002年04期
6 孙锋 ,林栋j;Microstructure evolution in a large-grained TiAl alloy[J];Transactions of Nonferrous Metals Society of China;2002年04期
7 孔凡涛,陈子勇,田竞,陈玉勇,贾均;Effect of Rare Earth on Microstructure of γ-TiAl Intermetallics[J];Journal of Rare Earths;2003年02期
8 ;TiAl ALLOYS FOR INDUSTRIAL USE[J];Acta Metallurgica Sinica(English Letters);1995年Z1期
9 ;ADVANCE IN Ti_3 Al AND TiAl INTERMETALLICS RESEARCH IN CISRI[J];Acta Metallurgica Sinica(English Letters);1995年Z1期
10 ;CONSOLIDATION BEHAVIOR OF MECHANICALLY ALLOYED γ-TiAl[J];Acta Metallurgica Sinica(English Letters);1995年Z1期
相关会议论文 前10条
1 ;Study on aging phase transformation process in Ni_(42) CrTiAl alloys[A];第二届全国扫描电子显微学会议论文集[C];2001年
2 Xiang Zan;Li Ouyang;Yu Wang;Yuehui He;Yong Liu;Weidong Song;;Microstructure Evolution of TiAl under Tensile Impact Loadings[A];中国材料大会2012第15分会场:TiAl合金及先进结构金属间化合物材料论文集[C];2012年
3 Fan Yang;Xiao Li;Nan Tian;Yongfeng Liang;Junpin Lin;;Effect of Nb Addition on the Corrosion Behavior of Porous TiAl Based Alloys in Aqueous Environments[A];中国材料大会2012第15分会场:TiAl合金及先进结构金属间化合物材料论文集[C];2012年
4 Zhiyong Xue;YuanXun Huang;Yongtian Wang;Xiaojing Hai;;Laser Remelting Effect on the Joint Property of Diffusion Bonding of TiAl Intermetallics and TC4 Alloy[A];中国材料大会2012第15分会场:TiAl合金及先进结构金属间化合物材料论文集[C];2012年
5 刘辛;骆接文;谢焕文;蔡一湘;;惰性气体雾化法制备TiAl_3粉末的特性[A];第十四届全国钛及钛合金学术交流会论文集(上册)[C];2010年
6 Na Liu;Zhou Li;Guoqing Zhang;Hua Yuan;Wenyong Xu;Zhengjiang Gao;;Effect of Heat Treatment on the Microstructure and Property of TiAl Alloys Prepared by Gas Atomization Powders[A];中国材料大会2012第19分会场:高温合金论文集[C];2012年
7 ;Influence of Heat Treatment on The Precipitation of γ1 Phase in High Nb Containing TiAl-based Intermetallic Alloys[A];2011中国材料研讨会论文摘要集[C];2011年
8 Chuanyun Wang;Jinshan Li;Bin Tang;Hongchao Kou;;Numerical Analysis of Superplastic Bulging Process of TiAl Sheet[A];中国材料大会2012第15分会场:TiAl合金及先进结构金属间化合物材料论文集[C];2012年
9 孟祥康;洪建明;刘毅;赵晓宁;刘治国;;二相TiAl基金属间化合物层片结构中的位错组态[A];第八次全国电子显微学会议论文摘要集(Ⅱ)[C];1994年
10 Qing Ye;Zhimeng Guo;Qikai Duan;Chunlei Yang;Junjie Hao;;Preparation of TiAl Intermetallic Alloy by Gelcasting[A];中国材料大会2012第15分会场:TiAl合金及先进结构金属间化合物材料论文集[C];2012年
相关重要报纸文章 前1条
1 中航工业黎明航空发动机(集团)有限责任公司 汪大成;钛铝合金(TiAl)应用现状及发展趋势[N];中国航空报;2012年
相关博士学位论文 前10条
1 舒世立;过渡族金属元素和内生陶瓷颗粒对TiAl压缩性能的影响规律及机制[D];吉林大学;2013年
2 孙涛;原位自生Ti_2AlN/TiAl复合材料制备与高温性能研究[D];哈尔滨工业大学;2012年
3 杨慧敏;TiAl-5Nb合金定向凝固过程中组织演化规律的研究[D];哈尔滨工业大学;2010年
4 廖翠姣;TiAl合金渗碳处理及其耐蚀性能研究[D];中南大学;2014年
5 罗江山;粉末冶金TiAl基合金的晶粒细化及其效应研究[D];中国工程物理研究院;2014年
6 彭超群;循环热处理对TiAl基合金组织与性能的影响[D];中南大学;2001年
7 昝祥;TiAl金属间化合物高温动态力学行为及变形机理研究[D];中国科学技术大学;2008年
8 袁勇;TiAl基金属间化合物的脱溶反应和位错结构研究[D];南京大学;2006年
9 高帆;大尺寸TiAl合金铸锭挤压开坯变形行为与工艺研究[D];东北大学;2011年
10 张志勇;高洁净度TiAl合金及其纳米复合材料的制备,组织和力学性能[D];北京科技大学;2015年
相关硕士学位论文 前10条
1 邢发军;TiAl/TiO_2界面相互作用的第一性原理研究[D];哈尔滨工业大学;2013年
2 王保栋;TiAl/Al_2O_3界面相互作用第一性原理研究[D];哈尔滨工业大学;2012年
3 韩波;残留缺陷对铸造TiAl合金择优取向层片组织疲劳寿命的影响[D];昆明理工大学;2015年
4 李志明;基于Ti-Al-Nb-Cr-B体系的TiAl基合金设计与微观组织研究[D];中国地质大学(北京);2015年
5 张如炳;电子束物理气相沉积制备TiAl基合金薄板的组织性能研究[D];哈尔滨工业大学;2007年
6 高丽洁;TiAl金属间化合物力学性质及理论机制的计算研究[D];湖南大学;2010年
7 张楚惠;TiAl/TiB_2复合材料的微观组织及高温氧化性能研究[D];湖南大学;2008年
8 卢斌;TiAl基合金高温变形数值模拟及组织演化研究[D];中南大学;2013年
9 樊宁霞;掺杂强化Al_2O_3/TiAl高温复合材料的研究[D];陕西科技大学;2014年
10 詹承华;燃烧合成加热压一体化成型制备TiAl基复合材料技术研究[D];吉林大学;2015年
,本文编号:1920700
本文链接:https://www.wllwen.com/kejilunwen/jiagonggongyi/1920700.html