多从机工频电阻焊接系统的设计
发布时间:2018-05-25 20:33
本文选题:多点焊接 + 触摸屏 ; 参考:《安徽理工大学》2017年硕士论文
【摘要】:随着工业生产自动化程度不断提高,焊接设备逐渐向网络化、集成化、数字化和高效率方向发展。在现有的工频电阻焊接设备中,一般是一台焊机控制器控制一台变压器,对于需要进行多点焊接的材料,需要多台焊接变压器同时工作才能完成焊接任务。而当焊接参数值较多时,参数调整过程也非常繁琐,导致焊接效率低下。本文针对焊接设备无法进行多点焊接、参数设置繁琐、焊接效率低等问题,提出了一种多从机工频电阻焊接系统,它通过一块触摸屏可以实现对多台焊接设备进行参数设置、工作状态的监控、焊接参数记录以及故障的报警。多从机工频电阻焊接系统的主焊接设备选用单相工频电阻焊机,由调整可控硅的触发角来对焊接变压器二次侧输出电流的大小进行调节。系统将触摸屏作为上位机,通过触摸屏与焊接控制器(集控中心)进行人机交换,同时集控中心又与多个驱动控制器(驱动模块)进行通信,从而达到群控焊机进行焊接工作的目的。触摸屏、驱动模块与集控中心之间采用RS485通讯方式。在系统硬件设计中,采用ATmega128和ATmega8组成的双控制芯片来设计数字化控制电路,充分地发挥了 ATmega128单片机存储能力、控制能力强大和ATmega8单片机成本低廉的优势。集控中心的硬件设计电路主要包括电源模块、网压采样模块、RS485通讯模块、过零检测电路、备用的输入输出口以及继电器输出接口等。驱动模块重点设计了控硅驱动电路、RS485通讯模块、脚踏开关电路、气阀电路、操作面板模块等硬件电路。将触摸屏当作人机交换界面,介绍了触摸屏的界面编写过程,触摸屏程序采用由威纶通提供的特定语言编写。软件方面,介绍了系统、集控中心和驱动模块的工作流程图,并且完成程序调试。通过触摸屏给集控中心送入焊接参数,集控中心对参数进行处理,并将处理好的数据存入到EEPROM中,当给出焊接命令时,将处理好的数据发送给相应的驱动模块,控制焊接变压器进行焊接工作,减少驱动控制器的工作量,提高效率。最后,本文对本次设计进行了实验测试,分别进行了焊接模式下的系统测试和监控模式下的系统测试,对触摸屏界面进行了编写和分析,并给出次级输出电流的波形图。经过长期的反复测试,表明测试系统稳定,能达到预期的设计目标。
[Abstract]:With the increasing automation of industrial production, welding equipment is developing towards networking, integration, digitalization and high efficiency. In the existing power frequency resistance welding equipment, usually a welding machine controller controls a transformer. For the materials that need to be multipoint welding, several welding transformers are required to work simultaneously to complete the welding task. When the welding parameter value is more, the parameter adjustment process is also very complicated, resulting in low welding efficiency. Aiming at the problems that welding equipment can not carry out multi-point welding, parameter setting is cumbersome and welding efficiency is low, a multi-slave machine power frequency resistance welding system is proposed, which can set parameters of multiple welding equipments by a touch screen. Monitor working status, record welding parameters and alarm for failure. Single phase power frequency resistance welding machine is used in the main welding equipment of multi-slave power frequency resistance welding system. The output current of secondary side of welding transformer is adjusted by adjusting the trigger angle of SCR. The system takes the touch screen as the upper computer and exchanges with the welding controller (centralized control center) through the touch screen. At the same time, the centralized control center communicates with several driving controllers (driving modules). In order to achieve the purpose of welding group control welding machine. Touch screen, driving module and centralized control center using RS485 communication mode. In the system hardware design, the double control chip composed of ATmega128 and ATmega8 is used to design the digital control circuit, which makes full use of the storage ability of ATmega128 single chip computer, the powerful control ability and the low cost of ATmega8 single chip microcomputer. The hardware design circuit of the central control center mainly includes power supply module, network voltage sampling module and RS485 communication module, zero crossing detection circuit, spare input and output, relay output interface, etc. The driving module focuses on the design of silicon control drive circuit RS485 communication module, foot switch circuit, air valve circuit, operation panel module and other hardware circuits. Taking touch screen as man-machine exchange interface, this paper introduces the interface programming process of touch screen. The touch screen program is written in a special language provided by Veritone. Software, introduced the system, centralized control center and driving module flow chart, and complete the program debugging. Through the touch screen, the welding parameters are sent to the centralized control center. The central control center processes the parameters, and stores the processed data into the EEPROM. When the welding command is given, the processed data is sent to the corresponding driving module. Control welding transformer welding, reduce the workload of driving controller, improve efficiency. Finally, the design is tested, the system test in welding mode and the system test in monitoring mode are carried out, the interface of touch screen is written and analyzed, and the waveform diagram of secondary output current is given. After long-term repeated test, it shows that the test system is stable and can reach the expected design goal.
【学位授予单位】:安徽理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TG438.2
【参考文献】
相关期刊论文 前10条
1 熊文;王莉;肖健;吕鹏;伊洋;;一种RS485串口通信电路的高可靠性设计[J];自动化与仪器仪表;2017年03期
2 石学勇;;西门子触摸屏的组态和编程[J];科技资讯;2017年03期
3 靳坤;张亚;李平平;;基于DSP的中频电阻焊接控制器[J];焊接技术;2015年10期
4 李东光;;自动化焊接技术及其发展探讨[J];中国高新技术企业;2015年20期
5 仝新建;;基于RS-485总线的多点测温系统原理与实现[J];南京工业职业技术学院学报;2015年01期
6 郭瑞鹏;杨战利;李远;;电阻焊在工业生产中的应用及发展现状[J];机械制造文摘(焊接分册);2015年01期
7 阮晓聪;姚松丽;刘凯强;任宇坪;;基于单片机的GPS显示模块设计[J];中国科技信息;2014年23期
8 ;长征系列运载火箭全智能中频焊机评审会在天津召开[J];电焊机;2014年07期
9 张兰芝;;大中型电机定转子通风槽板点焊工艺总结[J];防爆电机;2013年04期
10 张雷;徐洪浩;;MODBUS协议及其在横河DCS上的通讯[J];化工管理;2013年04期
,本文编号:1934585
本文链接:https://www.wllwen.com/kejilunwen/jiagonggongyi/1934585.html